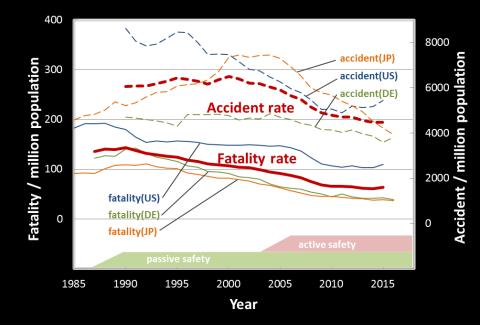


NDRS2018

Risk situation prediction with Near-miss incident data base

Tsukasa Sugino, Julian Eggert

Honda Research Institute Europe



- 1. Background
- 2. Our approach
- 3. TUAT Near-miss incident database
- 4. Risk situation prediction
- 5. Prediction performance evaluation and analysis
- 6. ADAS Application

7. Summary

OECD data, <u>https://data.oecd.org/transport/road-accidents.htm /</u>
International Road Federation, "World Road Statistics (2010)"
ITARDA, "Traffic statistics (2010)" (Japanese)
IRTAD, "Annual Report (2014)"

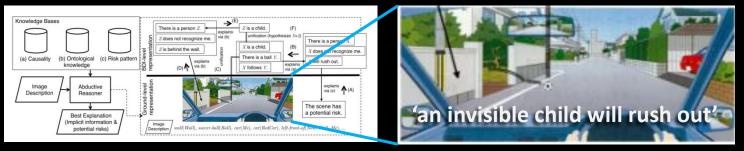
ADAS (Advanced Driver Assistance System) greatly contributes to the reduction

But in the last 5 years, it has been flat

Functional limit of conventional ADAS in unexpectable situation

Example of potential risk predictable ADAS

Motivation : Create potential risk predictable ADAS



Prior art

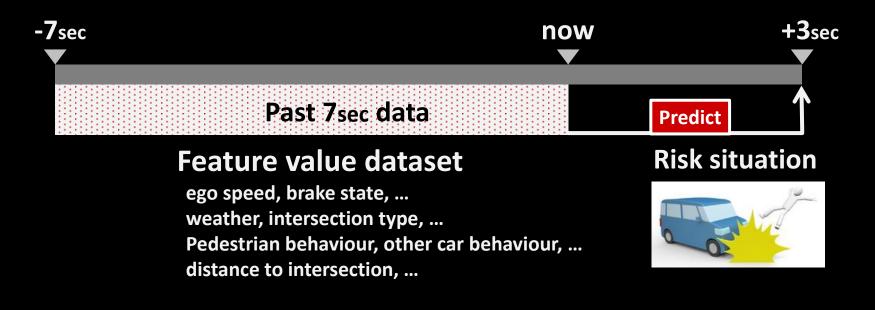
Expert system

Inoue, Context-aware logical abduction-based risk prediction^[5]

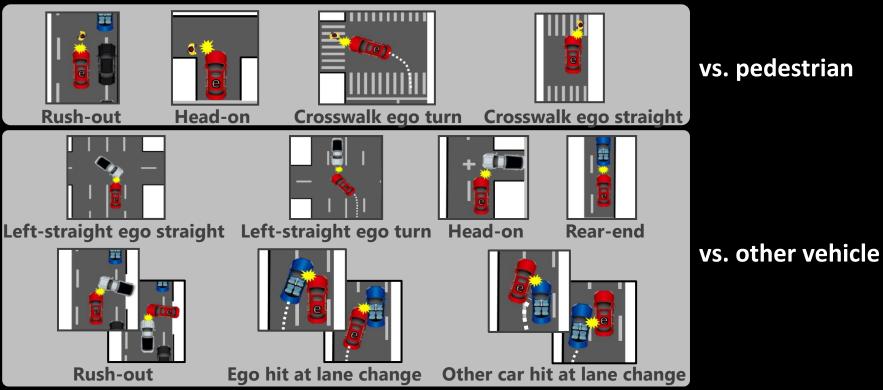
Advantage:

Driver can understand situation easily

Disadvantage:


Limit of human knowledge and experience

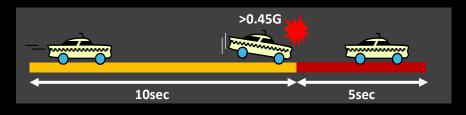
[5] N. Inoue, Y. Kuriya, S. Kobayashi, K. Inoue "Recognizing Potential Traffic Risks through Logic-based Deep Scene Understanding," in 22nd ITS World Congress, 2015


Create prediction model using incident DB & machine leaning Target prediction time : 3 sec ahead

Our approach

11 risk situation

TUAT Near-miss incident DB


Constructed by TUAT (Tokyo Univ. A&T Smart Mobility research center)

More than 110,000 of crash/near-crash data collected from device on taxi

Front view video Ego vehicle state speed / brake / blinker / G / global position Road features

road type / intersection type / behavior ...

Incident types (we used them as risk situation)

Use stored traffic / ego state features and annotate features from video

Risk situation prediction

Features values for each incident cases \rightarrow 99 feature values

Random data samples for each risk situation type \rightarrow 3949 samples

											1								
ſ								λ											
caseld s	straightRoad i	ntersec	curve	priority	trafficLight	crossWalk	stopLine	trafficSign			brake1	brake2	brake3	brake4	blink1	blink2	blink3	blink4	Cat
95277 b	biDirectWay	F :	straight	priority	trafficLight	crossWalk	stopLine	fewTrafficSign			 ON	ON	ON	ON	R	OFF	OFF	OFF	V_CutInToOther
276772 k	biDirectWay	4	straight	noPriority	trafficLight	crossWalk	stopLine	normalTrafficSign			 OFF	ON	OFF	OFF	R	R	OFF	OFF	V_CutInToOther
179268 b	biDirectWay	Г i	straight	noPriority	trafficLight	crossWalk	stopLine	fewTrafficSign			 OFF	OFF	OFF	OFF	R	R	R	R	V_CutInToOther
254833 b	biDirectWay	Non	straight	noPriority	trafficLight	crossWalk	stopLine	manyTrafficSign			 OFF	OFF	V_CutInToOther						
251007 b	biDirectWay	F s	straight	noPriority	noTrafficLight	crossWalk	stopLine	fewTrafficSign			 ON	OFF	V_CutInToOther						
312037 k	biDirectWay	Non	straight	noPriority	trafficLight	crossWalk	stopLine	fewTrafficSign			 OFF	OFF	V_CutInToOther						
154988 b	biDirectWay	4	straight	noPriority	trafficLight	crossWalk	stopLine	fewTrafficSign			 OFF	OFF	OFF	OFF	R	OFF	OFF	OFF	V_CutInToOther
120685 c	other N	Y I	straight	priority	noTrafficLight	crossWalk	stopLine	fewTrafficSign			 ON	ON	OFF	OFF	L	L	L	OFF	V_HeadOn
279240 b	biDirectWay	4	straight	noPriority	noTrafficLight	noCrossWalk	stopLine	normalTrafficSign			 ON	ON	OFF	OFF	L	L	L	OFF	V_HeadOn
73304 b	biDirectWay	Г	obtuse	priority	trafficLight	crossWalk	stopLine	fewTrafficSign			 OFF	OFF	V_HeadOn						
118265 c	other .	5	straight	priority	trafficLight	crossWalk	stopLine	fewTrafficSign			 OFF	OFF	V_HeadOn						
73483 k	biDirectWay	F :	straight	noPriority	noTrafficLight	crossWalk	stopLine	fewTrafficSign			 OFF	ON	ON	ON	L	L	L	OFF	V_HeadOn
261469 k	biDirectWay	F :	straight	noPriority	noTrafficLight	noCrossWalk	stopLine	fewTrafficSign			 ON	ON	OFF	OFF	L	L	OFF	OFF	V_HeadOn
329869 o	other .	4	straight	noPriority	noTrafficLight	noCrossWalk	noStopLine	fewTrafficSign			 OFF	OFF	V_HeadOn						

99 feature values

Use those data for machine learning for risk situation prediction model

3949 samples

Risk situation

Prediction performance evaluation

Compare 4 classifiers :

Logistic regression / Ridge classifier / Random Forest / Multi Layer Perceptron

Evaluate with 20 fields cross-validation

	Learning classifier type	Prediction so	Overfitting rate			
	Learning classifier type	Test sample	Training sample	(train-test)/test		
Hur	man subject (base line)	0.37				
	Logistic Regression (LR)	0.43	0.49	0.13		
ifier	Ridge Classifier (RC)	0.43	0.49	0.14		
Classifier	Random Forest (RF)	0.39	0.41	0.07		
	Multi Layer Perceptron (MLP)	0.41	0.45	0.09		

Our system prediction score is slightly better than base line

RF and MLP perform better performance

Prediction performance analysis

Our system prediction score

Ego Straigh

Ego Turn

^o:Crosswalk ^o:Crosswalk

P:Head on

- P:Crosswalk Ego Straigh P:Crosswalk Ego Turn P:Head on
- P:Rush out
- Situation
- V:Hit to Ego in cut-in V:Hit by Ego in cut-in
 - V:Head on
 - V:LeftStraight Ego Straig V:LeftStraight Ego Turn V:Rear end
 - V:Rush out
- $P: \rightarrow vs$ Pedestrian $V: \rightarrow vs$ Other vehicle

t	158	30	41	28	11	9	25	47	2	4	4
	32	179	13	5	10	2	25	6	79	7	0
	46	14	185	9	1	4	77	11	3	4	5
ŧ,	34	19	18		17	23	22	14	4	3	79
	18	16	5	28	110	54	11	44	33	10	28
•5	20	25	4	20	54	86	6	79	15	14	35
	33	36	76	3	1	4		29	26	8	9
nt	40	8	2	9	13	32	14	221	3	11	5
	6	45	5	2	9	2	10	13	255	8	4
Ľ,	39	24	3	14	27	61	15	75	38	The	37
ŝ	15	10	7	68	27	25	20	20	6	7	15.
								t			

V:LeftStraight Ego Straigl V:LeftStraight Ego Turn

JV:Hit to Ego in cut-in **pap**V:Hit by Ego in cut-in **oi**V:Head on **u**


V:Hit to Ego in cut-in

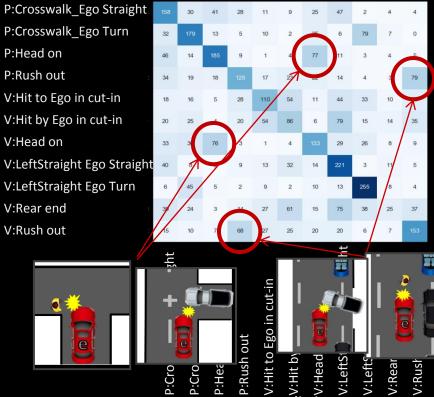
P:Rush out

Human prediction score

- P:Crosswalk_Ego Straight P:Crosswalk Ego Turn P:Head on P:Rush out
- V:Hit to Ego V:Hit by Ego V:Head on V:Hit to Ego in cut-in V:Hit by Ego in cut-in
 - V:LeftStraight Ego Straight V:LeftStraight Ego Turn V:Rear end V:Rush out

29	3	3	8	5	3	3	0	2	3	2
3	30	5	3	3	0	2	0	7	3	0
4	6	12	11	2	2	19	1	1	0	4
7	2	2	18	7	2	2	2	1	2	1
4	3	0	2	9	13	0	1	2	3	0
4	3	1	3	8	15	1	1	3	6	1
3	5	3	8	3	2	16	1	0	3	11
13	5	2	3	7	5	3	13	2	2	1
0	9	0	0	1	1	1	2	42	4	0
2	0	1	4	4	2	2	2	3	20	1
3	0	1	4	2	6	8	0	2	4	10

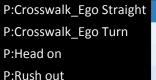
Prediction performance analysis


Our system prediction score

P:Crosswalk_Ego Straight P:Crosswalk Ego Turn P:Head on P:Rush out

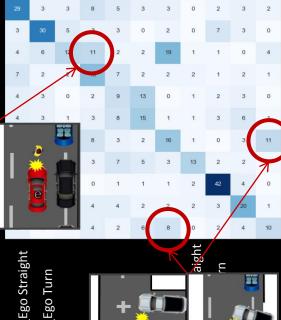
V:Hit by Ego in cut-in V:Head on V:LeftStraight Ego Straight V:LeftStraight Ego Turn

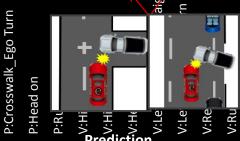
V:Rear end


V:Rush out

Prediction

Human prediction score


P:Crosswalk_ P:Crosswalk_



V:Hit to Ego in cut-in Situation

V:Hit by Fgo in cut-in

V:Head V:Left V:Strai V:Rear V:Rush out

Application to ADAS

System implement on car

Test result on real road

proposed completely data driven Potential risk situation prediction

evaluated prediction performance

showed an ADAS application

Next plan:

extend data base to wider area evaluate driver feeling

Thank you for your attention