Funded By

Exploring human-vehicle communication to balance transportation safety and efficiency: A naturalistic field study of pedestrianvehicle interactions

> Micah Roediger Jeffery Hickman E. Scott Geller August 29th, 2018

Introduction

- Pedestrians are vulnerable
- Solution: autonomous vehicles
- Pedestrian-vehicle interactions

Research Questions

- Will pedestrian behavior differ when a vehicle is perceived as autonomous ("self-driving")?
- What are the factors that predict yield behavior?
 - Individual differences
 - Situational factors

Methodology: Design (2x2x2)						
	No Think-Al	oud Protocol			Think-Aloud Protocol	
	Sign	No Sign			Sign	No Sign
Route 1	3	1		Route 1	3	1
Route 2	4	2		Route 2	4	2

Experimental Equipment

5

Experimental Equipment

7

Methodology: Participants

- 5 Males & 5* Females
- Accompanied by experimenter as mandated by IRB

9

• Video data was coded in Hawkeye, a proprietary software from the Virginia Tech Transportation Institute

Analysis

- Descriptive
 - Differences in yield behavior for:
 - Driving condition
 - Narration
 - Drive route
 - Differences in driver or pedestrian behavior for:
 - Driving condition
 - Narration
- Regression
 - Data structure is nested (events → drivers)
 - Multilevel logistic regression analysis

- 1,808 coded events
- 29 bicyclist events (removed from analysis)
- 41 events removed for pedestrians not attempting to enter roadway or low frequency yield behavior
- 1,738 coded events used in analysis

Reliability: Percent Agreement

- 100 events
- Percent agreement
- Range
 - 56-100%
- 80% is generally accepted reliability
- Reliability over 80% for 43/45 variables
- Pedestrian path obstruction (56%)
- Pedestrian assertiveness (66%)

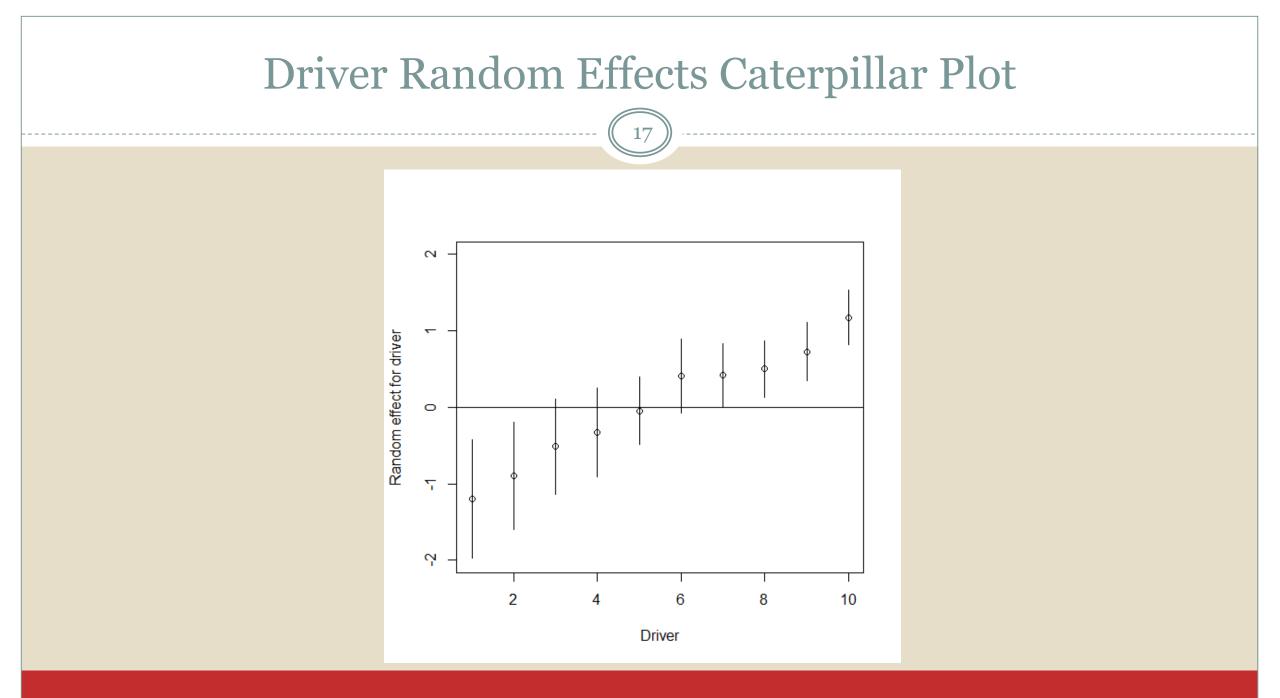
VIRGINIA TECH. Descriptive Analysis: Yield Behavior

13

		Yield	Failure to yield	χ²(df)
Driving context	No sign	763	86	1.4 (1)
	Sign	783	106	
Narration	No think-aloud	762	97	0.1 (1)
	Think-aloud	784	95	
Drive Route	Route one	990	123	0.1 (1)
	Route two	556	69	

*Significant at alpha 0.05

VIRGINIA TECH. VIRGINIA TECH. (14)


		No sign	Sign	χ²(df)
Driver hand position	Top of wheel	446	339	41.7 (2)*
	Side of wheel	36	28	
	Bottom of wheel	367	522	
Driver wave through	Yes	79	59	4.2 (1)*
	No	770	830	

*Significant at alpha 0.05

VIRGINIA TECH.		tive Analysis:	Narration	
		No think-aloud	Think-aloud	<u>χ²(df)</u>
Driver eye contact	Yes	No think-aloud 795	Think-aloud 779	χ²(df) 7.8 (1)*

*Significant at alpha 0.05

Unconditional Means Model VIRGINIA TECH... 16 **Fixed effects Standard error** Estimate Intercept 0.26 -2.30 Random effects Variance Standard deviation Driver 0.78 0.61

Regression Model

18

Inclusion criteria

- All categories with greater than 5% of overall data
- Remove correlations greater than 0.7

• Coefficient interpretation criteria

- Large effect
 - 4.1387
- Medium effect
 - 2.4972

Regression Model

Fixed effects	Odds Ratio	Z-score	<i>p</i> -value	Effect size
Intercept	0.15	-2.77	0.01	
Driver Expression (eye contact vs. none)	0.02	-11.64	0.00*	Large
Pedestrian Expression (eye contact vs. none)	3.31	3.35	0.00*	Medium
Traffic Control (stop sign vs. none)	0.06	-3.21	0.00*	Large
Factor Affecting Driver Path (yes vs. none)	0.16	-5.77	0.00*	Large
Factor Affecting Pedestrian Path (yes vs. none)	3.85	3.57	0.00*	Medium
Vehicle in Opposing Lane (yes vs. no)	0.35	-2.77	0.01*	Medium
Pedestrian Distance (o feet vs. in crosswalk)	16.32	5.09	0.00*	Large
Pedestrian Distance (0-5 feet vs. in crosswalk)	16.03	5.38	0.00*	Large
Pedestrian Distance (5-10 feet vs. in crosswalk)	76.02	7.82	0.00^{*}	Large
*Significant at alpha 0.05				

- Hand signals
- Drivers alter visible behaviors in the sign condition
- Drivers appear distracted in the narration condition
- Driver speed, pedestrian distance, pedestrian assertiveness
- Right-of-way
- Yield signs
- Path obstructions
- Individual differences

Limitations

- Video
 - Field of view
 - Resolution
- Audio
- Field study
- Human error

Future Research

22

• Qualitative analysis

- Current data
- Driver centered
- Pedestrian centered

• Alter equipment

- Cameras
- Radar
- LiDAR
- Deep learning algorithms
 - Convolutional neural networks

Special Thanks

23

SAFETY THROUGH DISRUPTION

Center for Applied Behavior Systems (CABS) Research Assistants: Annie Eick & Christine Fuance