

SHRP2 Implementation Assistance Program (IAP)—Round 4 Concept to Countermeasures—Research to Deployment Using the SHRP2 Safety Data

1

Use of the SHRP2 Safety Data for Investigation of Driver Behavior in Adverse Weather Conditions: Lessons learned from the Wyoming Department of Transportation Implementation M. Ahmed, PhD, P.E. Assistance Program

Mohamed M. Ahmed, PhD, P.E. Ali Ghasemzadeh, Postdoctoral Researcher Britton Hammit, Eisenhower PhD Research Fellow Nasim Khan, PhD Student Anik Das, PhD Student Elhashemi Ali, PhD Candidate Rhonda Kae Young PhD, P.E. Hesham Eldeeb PhD

Department of Civil & Arch. Eng. University of Wyoming

> U.S. Department of Transportation Federal Highway Administration

AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS

TRANSPORTATION RESEARCH BOARD OF THE NATIONAL ACADEMIES

OUTLINE

Phase 1 and 2 Results

- Background
- Objectives
- Methodology
- Data Preparation and Description
- Some Key Results
- Conclusions

Phase 3 Ongoing Work

- Research to Countermeasures
- Integration within Wyoming VSL and CV Pilot

- ➢ Non-VSL Corridors
- Integrating Driver's Behavior in VSL Algorithms
- ➢ CV Pilot: Better Info
- Future Connected/Automated Vehicle
- Speed Compliance and Enforcement
- Speed Management at Work Zones
- VSL Guidelines

SHRP2 IAP Projects

IAP Project	State DOT			
Adverse Weather Conditions	Wyoming DOT			
Horizontal and Vertical Curves	North Carolina DOT			
Interchange Ramps	Utah DOT			
Roadway Departure	lowa DOT			
Roadway Lighting	Washington DOT			
Speeding	Michigan DOT Washington DOT			
Work Zones	Minnesota DOT			
Pedestrian Safety	Florida DOT Nevada DOT New York DOT			

I-80 Reduced Visibility Condition (Source: WYDOT)

The Only Study Exclusively Investigating the impacts of Adverse Weather Conditions on Speed Behavior and Driver's Performance

WYDOT SHRP 2 IAP

SHRP2 Safety Data Implementation Assistance Program—Concepts to Countermeasures

- 1. Proof of Concept
- 2. In-depth Research & Analysis
- 3. Countermeasure Implementation

WEATHER IMPACT

- Fog, snow, rain, strong wind, etc. affect: pavement conditions, vehicle performances, visibility, and **drivers' behavior and performance**.
- Weather contributed to > 24% of total crashes, 1995-2008 (NHTSA)
- Inclement weather \rightarrow 31,514 Fatal Crashes, 2000-2007 (NHTSA)
- More than 6,000 people are killed and close to 480,000 people are injured in weather-related crashes every year in the US.
- ~38% of inclement weather crashes in Wyoming
- Crashes are a leading cause of Interstate Closures.
- 3-40% reductions in speed
- 4-27% reductions in capacity
- \$2.3 billion in snow/ice control
- 32.6 billion lost hours for freight industry

45 vehicles pileup crash, I-80 April 16, 2015 (Source: WYDOT)

PROJECT OBJECTIVES

- 1. Examining the feasibility of using SHRP2 NDS and RID datasets for adverse weather safety research
- 2. Quantifying driver's microscopic behaviors and performances (i.e., speed selection, lane-keeping, headway, car-following, etc.) in inclement weather
- 3. Improve VSL and Advanced Traveler Info System
- 4. Early investigation of CV Weather Applications

(Source: Global Road Safety Review 2016)

Drivers Response to Adverse Weather Conditions

- 1.Can inclement weather trips be identified effectively using the NDS and RID data?
- 2. Can driver responses (i.e., speed and headway adaptation, and lane keeping) during inclement weather be characterized efficiently from the NDS data?
- 3. What are the best Surrogate Measures for weather-related crashes that can be identified using the NDS data?
- 4. What type of analysis can be performed and conclusions be drawn from the resulting dataset?
- 5. Can the NDS data be extrapolated to provide real-time weather information in the context of the Road Weather Connected Vehicle Applications?

PHASE I - Proof of Concept

PHASE 2 – In-Depth Analysis

- All 6 NDS States.
- All adverse weather conditions.
- More variables.
- Improve the Visualization and Red. Tool.
- External Data to leverage NDS data.

Data Acquisition

- Critical Events on Freeways (All Weather and Traffic Conditions)
 - 16 Crashes and 213 Near-crashes
- Normal Driving Trips in Adverse Weather Based on Wiper Status Using NCDC data and weather-related crash data

Wiper Status

Using Airport Weather Stations

Using RID Weather-related Crashes

Data Acquisition

Data Acquisition

Method 1 Windshield Wiper Status

11,164 Potential Weather-related Trips & 22,328 Matching Clear Trips

33,492 Total Trips Acquired

Total Duration Adverse + 2 Matched Clear Trips: 6,700HR

Method 2

NCDC Weather Data

Method 2 Method 3

Method 3

Reported Crashes

4,094 trip sets

Method 1

Data Acquired

Weather	Method 1: Wiper	Method 2: NCDC	Method 3: Crashes	Total
Rain	507	2,374	132	3,013
Fog	14	157	63	234
Snow	29	175	116	320
Wet surface/ Clear Condition	10	298	9	317
Snowy surface/ Clear Condition	0	182	28	210
Total	560	3,186	348	4,094

(More than 1,700 drivers → 3,013 Rain, 234 Fog, 320 Snow, 317 Wet Surface/ Clear, 210 Snowy Surface/ Clear): ~ 85% missing wiper status

Manual Video verification showed that only **4,094** were weather-related trips

Data Preparation

Manual Video Observation

Data Preparation

Data Reduction: Weather, Visibility, Surface and Traffic Conditions

Roadway T	уре	Surface Conditio	ns (cont.)
Non-Freeway	0	Snow Covered	3
Freeway	1	Ice Covered	4
Weather Cond	ditions	Visibility	1
Clear	1	High	1
Light Rain	2	Medium	2
Heavy Rain	3	Low	3
Snow	4	Traffic Cond	itions
Fog	5	LOS A	1
Sleet	6	LOS B	2
Mist/ Light Rain	7	LOS C	3
Surface Cond	itions	LOS D	4
Dry	1	LOS E	5
Wet	2	LOS F	6

Data Visualization and Reduction Tool

The accuracy of the Visibility Level estimation algorithm reached 79% Machine Learning of Video and Vehicle Kinematics ~ 90% weather condition

Data Preparation

Conceptual Overview of Phase 2 Data Acquisition and Preparation

			St	now	Matche	ed Clear	R	ain	Matche	ed Clear	F	og	Matche	d Clear
Descriptive			Speed	% Speed Reduction	Speed	% Speed Reduction	Speed	% Speed Reduction	Speed	% Speed Reduction	Speed	% Speed Reduction	Speed	% Speed Reduction
Descriptive		Average	87.72	-10.12	106.07	8.52	91.727	1.074	97.9	6.93	104.41	3.03	108.12	6.55
		SD	21.76	20.32	12.96	13.32	11.31	12.87	11.93	12.33	13.21	11.27	14.21	12.28
Statistics	(hq	Min.	22.77	-74.27	28.07	-88.64	51.092	-49.46	32.16	-63.66	44.818	-44.3	26.48	-72.57
	(K	Max.	130.43	43.25	134.76	78.02	119.284	76.74	125.7	54.02	130.89	46.33	132.67	42.59
	eed	Median	89.05	-7.75	106,65	8.98	92.046	0.742	98.75	7.18	106.14	5.12	111.42	8.25
	Sp	t-test	A	vg. speed in Snow	is sig. lower in sn	io <mark>v</mark>		Avg. speed si	g. lower in Rain			Avg. speed si	g. lower in Fog	
		F-test		Speed variability is	s higher in Snow			No sig. difference	in speed variabilit	<u>y</u>	N	lo Sig. Difference	in Speed Variabil	ty
		Z-test	No sig. diffe	Snow:				etween the pro	oportion of speedin	$g \ge 10 \text{ km/h}$	No sig. differe	ence between the	proportion of spee	$\dim g \ge 10 \text{ km/h}$
Snow: 88 trips (1004 MI).	60		Acc.			_		Dec.	Acc.	Dec.	Acc.	Dec.	Acc.	Dec.
	i)no	Average	0.017	10% re	ductio	n from	speed	-0.014	0.022	-0.021	0.02	-0.026	0.021	-0.022
Rain: 102 (2226MI)	rati	SD	0.015	Line it				0.015	0.02	0.019	0.017	0.02	0.018	0.018
$E_{2} \sim 22 (502 \text{ MI})$	cele	Min.	0	limit				-0.072	0	-0.105	0	-0.07	0	-0.096
Fog: 22 (393 MI)	De	Max.	0.076					0	0.093	0	0.074	0	0.079	0
	2	Median	0.012					-0.009	0.016	-0.015	0.014	-0.02	0.016	-0.019
	atic	t test	A	~19% f	rom th	eir mat	tched	lo sig. differen	nce in Avg. Acc.			No sig. differer	ce in Avg. Acc.	
	eleı	t-test						Avg. dec. is si	g. lower in rain,			Avg. dec. is si	g. higher in Fog	
% Sp. Red. = (Sp –	Acc	F-test	Acc No sig differen	celeration variability	y is sig. higher in s	now	D	No sig. difference	e in Acc. variability	y hor		No sig. difference	in Acc. variability	1
		Z - test	no sig. dilleteti	-	-	I SHOW AND CLEAR	No	Acc/Dec_were f	ound higher than +	-0 30	No	Acc /Dec. were for	und higher than +	030
Sp Lmt)/ Sp Lmt	ų		Pos.	Neg.	Pos.	Neg.	Pos.	Neg.	Pos.	Neg.	Pos.	Neg.	Pos.	Neg.
	otatic	Average	0.271	-0.362	0.321	-0.41	0.412	-1.602	0.417	-0.462	0.346	-0.463	0.34	-0.386
	left r	SD	0.335	0.335	0.443	0.427	0.344	2.318	0.445	0.431	0.457	0.348	0.311	0.336
	= ug	Min.	0	-2.761	0	-3.965	0.004	-7.631	0.002	-2.578	0.005	-1.969	0.001	-2.183
	'e si g./s)	Max.	3.681	-0.001	4.74	-0.001	1.651	-0.001	3.773	-0.001	3.2	-0.003	1.482	0
	gativ (deg	Median	0.183	-0.261	0.203	-0.287	0.299	-0.485	0.267	-0.322	0.226	-0.403	0.246	-0.297
	e, neg	t-test	Right rot	tation in Snow is si	g. lower than clea	r weather		No sig. difference	e in right rotation,			No sig. differenc	e in right rotation,	
	Rate		Left rota	tion in Snow is sig.	lower than Clean	r Weather		Left rotation is s	ig. higher in Rain.			Left rotation is s	ig. higher in Fog.	
	aw		Right rota	ation variability is si	ig. higher in clear	weather	Right ro	tation variability is	sig. higher in clear	r weather	Rig	ht rotation variabil	ity is sig. higher in	Fog
	X	F-test	Left rot	tation variability is s	sig. higher in clear	weather	Le	ft rotation variabil	ity is sig. higher in	rain	No	sig. difference in	left rotation variab	ility
			Pos.	Neg.	Pos.	Neg.	Pos.	Neg.	Pos.	Neg.	Pos.	Neg.	Pos.	Neg.
		Average	32.996	-36.096	20.74	-30.568	15.46	-15.913	19.644	-16.119	19.162	-27.956	14.695	-22.447
	cm)	SD	41.074	47.163	29.717	42.838	10.416	22.169	18.234	19.412	17.053	42.499	14.108	25.582
	iet (i	Min.	0.001	-333.65	0.095	-383.706	0.095	-224.66	0.076	-266.98	0.078	-323.856	0.073	-345.241
	Offs	Max.	377.895	-0.004	155.516	-0.071	51.171	-0.308	121.291	-0.049	76.985	-0.192	68.494	-0.225
	ne (Median	19.222	-18.269	12.022	-18.876	14.321	-10.538	15.985	-9.343	15.42	-17.086	10.275	-17.222
	La	t-test	Lane off	fset to the right in S	now is sig higher	than clear	Av	g. lane offset to th	ne right is lower in	rain	Avg. lane offset	to the right and le	eft from lane cente	r is sig. higher i
			Lane of	iset to the left in Sr	iow is sig. nigher t	nan clear	Lana officiat t	o sig. difference in	ity is signification in	alaar waathar	I and affind the	Fe	og	to star hitsh
		F-test	Lane of	fset to the left varia	bility in sig. higher	r in Snow	Lane o	fiset to the left variable	iability is sig. higher in	er in rain	Lane onset to t	ne right variability	and left variability	is sig. nigner if
			2				Lane o		ing a sign ing it			1	5	

Vehicle Kinematics – Example in Winter Condition

Weather-Related Trips Similar to Wyoming

Trip ID: 13910595 Visibility: Fog (NCDC) – whiteout condition visual observation Trip Location: New York (NDS TS) Surface: Snow (Video Observation) Vehicle Average Speed: 39.6 mph (NDS TS) Standard Deviation of Speed: 11.86 Wind Speed: 33 mph (NCDC) Speed Limit: (RID Reduced data) Trip ID: 13904014 Visibility: Clear (NCDC) Trip Location: New York (NDS TS) Surface: Dry (Video Observation) Vehicle Average Speed: 62 mph (NDS TS) Standard Deviation of Speed: 12.73 Speed Limit: (RID Reduced data)

Speed Selection/ Hot Spot Analysis – Example in Winter Condition

Whiteout-Snowy Surface

Speed Selection Model Ordered Logit Model

10,606 1-minute observations=177 hours Response: Percent Speed Reduction (4 Quantiles: > 14% red., 0-14%, 0-10 inc., >10 inc.)

Analysis of Maximum Likelihood Estimates									
				Standard	Wald			Confidence Interval	
Parameter		DF	Estimate	Error	Chi-Square	Pr > ChiSq	Odds Ratio		
Intercept	4	1	-2.57	0.09	800.41	<.0001	-	-	-
Intercept	3	1	-1.3	0.09	218.23	<.0001	-	-	-
Intercept	2	1	0.32	0.09	13.93	0.0002	-	-	-
Weather Cond.	Fog	1	0.26	0.09	7.61	0.0058	1.29	1.08	1.55
Weather Cond.	Rain	1	0.44	0.09	25.35	<.0001	1.55	1.31	1.83
Weather Cond.	Snow	1	2.23	0.06	1612.52	<.0001	9.29	8.33	10.36
Visibility	Affected	1	0.56	0.09	35.24	<.0001	1.75	1.45	2.1
Traffic Cond.	C-F	1	1.28	0.04	995.02	<.0001	3.6	3.32	3.89
Gender	Female	1	0.09	0.04	5	0.0254	1.09	1.01	1.18
Age	>40	1	0.2	0.05	18.24	<.0001	1.23	1.12	1.35
Marital Status	Divorced	1	0.81	0.09	86.57	<.0001	2.25	1.9	2.67
Marital Status	Widow(er)	1	1.2	0.11	121.33	<.0001	3.31	2.68	4.1
Marital Status	Unmrid- partnrs	1	-0.94	0.1	88.74	<.0001	0.39	0.32	0.48
Marital Status	Married	1	0.34	0.05	45.09	<.0001	1.4	1.27	1.55
Mileage Last Year	10,000 to 20,000	1	-0.5	0.05	122.3	<.0001	0.61	0.56	0.66
Mileage Last Year	>20,000	1	-0.58	0.06	92.33	<.0001	0.56	0.5	0.63

Speed Selection Model

Classification and Regression Trees (CART)

Speed Selection and Lan	e Keeping	
Using Parametric Ordinal Logistic Regress	ion and Nonparametric Decision-Tree	
Approaches for Assessing the Impact of W	eather Conditions on Driver Speed	
Selection Using Naturalistic Driving Data		
Ali Ghasemzadeh, University of Wyoming	10.01000	
Britton Hammit, University of Wyoming	18-01096	
Mohamed Ahmed, University of Wyoming	Event 281	
Rhonda Young, Gonzaga University	Effects of Inclement Weather on Driving Behavior and Traffic	
	Halil Ceylan, Iowa State University, presiding Maintenance and Preservation, Operations and Traffic Managemer Safety and Human Factors	nt, AH010
A Comprehensive Analysis of Driver Lane-	Keeping Performance in Fog Weather	
Conditions Using the SHRP 2 Naturalistic	Driving Study Data	
Anik Das, University of Wyoming		
Ali Ghasemzadeh, University of Wyoming	18-06242	
Mohamed Ahmed, University of Wyoming	Visibility Committee John Bullough, Rensselaer Polytechnic Institute (RPI), presiding	
	Operations and Traffic Management, Safety and Human Factors	AND40

Speed Selection and Lane Keeping

The impacts of heavy rain on speed and headway Behaviors: An investigation using the SHRP2 naturalistic driving study data

Mohamed M. Ahmed*, Ali Ghasemzadeh

Department of Civil and Architectural Engineering, University of Wyoming, Laramie, WY 82071, United States

Utilizing naturalistic driving data for in-depth analysis of driver lane-keeping behavior in rain: Non-parametric MARS and parametric logistic regression modeling approaches

Ali Ghasemzadeh*, Mohamed M. Ahmed

University of Wyoming, Department of Civil & Architectural Engineering, 1000 E University Ave, Dept. 3295, Laramie, WY 82071, United States

Car Following Model

Modeling Driving Behavior in Non-Free Flow Conditions

FHWA Work Zone Driver Model Software

Microsimulation Modeling

Identifying Deviation from Normal Driving in CV Environment

- Driver's Acc. Preference
- Observed changes in speed and headway (Radar Data Required)
- Discrepancies between Expected and Actual Vehicle Dynamics based on Roadway Geometry
- TTC, PRT, Headway, Long. And Lat. Acc., Yaw Rate were used in this study.

Crash Development (Adapted from Tingval et al., 2009)

Identifying Deviation from Normal Driving in CV Environment

Identifying Deviation from Normal Driving

Timeline Snapshots for a Rear-End Near-Crash

29

Identifying Deviation from Normal Driving

Acceleration and Yaw Rate for Following Vehicle Synchronized with Trajectories of Following, Leading, and Surrounding Vehicles for Swerving Event

Lessons Learned

- The high resolution trajectory-level (microscopic) results from Phase 2 are timely for improving safety and mobility on freeways in Wyoming.
- Identifying trips in various weather conditions was achievable using novel 3 complementary methods.
- Within the identified trips, ML using video and vehicle kinematics provided promising results to identify trajectory-level road weather conditions.
- Transferability assessment of the SHRP2 Results needs more investigation.
- Moving forward with CAV, this will help in identifying the level of data needs.

PHASE 3: Connected Human-in-the-loop Variable Speed Limit and ATIS

Wyoming I-80 Corridor – Connected Vehicle Map

32

Source: https://www.transportation.gov/connections/connecting-vehicles-and-infrastructure-wyoming

PHASE 3: Connected Human-in-the-loop Variable Speed Limit and ATIS

Wyoming Department of Transportation

Weather/ Driver Behavior & Performance - Based Variable Speed Limit

Advanced Traveler Information System

Connected Vehicle Weather Application

Develop a VSL Guidelines

Phase 3 Tasks

WYDOT Weather-based VSL and CV Integration

- 1. Collect Wyoming VSL Baseline Data.
 - a) Adjust driver behavior models to Wyoming Conditions.
- 2. Add CV Speeds to the VSL logic.
 - a) Update microscopic traffic and driver parameters in microsimulation models for Wyoming (Driving Sim Integration).
- 3. Update VSL logic using adjusted results from SHRP2 Phase 2.
- 4. Identify and model deviation from Normal Driving (Critical Safety Events) on I-80 based on calibrated models from SHRP2.
- 5. Account for variation between SHRP2 and CV data in identifying Critical Safety Events.
- 6. Integrate within the CV Pilot Corridor.
- 7. Integrate the new system into the TMC's IRIS winter 2018-19.
- 8. Develop a VSL Guidance.

Publications

- 1. Ahmed, M.M. and Ghasemzadeh, A. "The impacts of heavy rain on speed and headway Behaviors: An investigation using the SHRP2 naturalistic driving study data." Transportation Research Part C: Emerging Technologies, Vol 91. 2018.pp 371-384, 2018.
- Ali Ghasemzadeh*, Britton Hammit*, Mohamed Ahmed, Rhonda Young, Using Parametric Ordinal Logistic Regression and Non-Parametric Decision Tree Approaches for Assessing the Impact of Weather Conditions on Driver Speed Selection Using Naturalistic Driving Data. Transportation Research Record: Journal of the Transportation Research Board, 2018.
- 3. Ali Ghasemzadeh*, Mohamed Ahmed. Utilizing naturalistic driving data for in-depth analysis of driver lane-keeping behavior in rain: Non-parametric MARS and parametric logistic regression modeling approaches. **Transportation Research Part C: Emerging Technologies**. Vol 90. 2018. pp 379-392, 2018.
- Ali Ghasemzadeh*, Mohamed Ahmed, Driver's Lane Keeping Ability in Inclement Weather Conditions: Preliminary Investigation using the SHRP2 Naturalistic Driving Study Data, Transportation Research Record: Journal of the Transportation Research Board, Volume 2663, pp. 99-108, <u>https://doi.org/10.3141/2663-13</u>, 2017.
- Britton Hammit*, Ali Ghasemzadeh*, Mohamed Ahmed, Rhonda Young, Evaluation of Weather-Related Freeway Car-Following Behavior using the SHRP2 Naturalistic Driving Study, Proceedings of the Transportation Research Board 97th Annual Meeting, 2018.
- Ali Ghasemzadeh*, Britton Hammit*, Mohamed Ahmed, Hesham Eldeeb, Complementary Methodologies to Identify Weather Conditions in Naturalistic Driving Study Trips: Lessons Learned from the SHRP2 Naturalistic Driving Study & Roadway Information Database, Proceedings of the Transportation Research Board 97th Annual Meeting, 2018.
- Md Nasim Khan, Ali Ghasemzadeh*, Mohamed Ahmed, Investigating the Impact of Fog on Freeway Speed Selection Using the SHRP2 Naturalistic Driving Study Data, Proceedings of the Transportation Research Board 97th Annual Meeting, 2018.

Publications

- 8. Anik Das*, Ali Ghasemzadeh*, Mohamed Ahmed, A Comprehensive Analysis of Driver Lane-Keeping Performance in Fog Weather Conditions Using the SHRP2 Naturalistic Driving Study Data, Proceedings of the **Transportation Research Board 97**th **Annual Meeting**, **2018**.
- 9. Ali Ghasemzadeh*, Mohamed Ahmed, Sherif Gaweesh*, Multivariate Adaptive Regression Splines and Logistic Regression Models to Identify the Impact of Rainy Weather on Driver Lane-keeping Performance Considering Driver Demographics and Roadway Characteristics Using SHRP2 Naturalistic Driving Data, Proceedings of the **Transportation Research Board 97th Annual Meeting**, **2018**.
- 10. Mohamed Ahmed, Ali Ghasemzadeh*, Exploring the Impacts of Adverse Weather Conditions on Speed and Headway Behaviors Using the SHRP2 Naturalistic Driving Study Data. Proceedings of the **96th Transportation Research Board Annual Meeting**, **2017**.
- Ali Ghasemzadeh*, Mohamed Ahmed, A Probit-Decision Tree Approach to Analyze the Effects of Adverse Weather Conditions on Work Zone Crash Severity Using the Second Strategic Highway Research Program Roadway Information Dataset. Proceedings of the 96th Transportation Research Board Annual Meeting, 2017.
- 12. Ali Ghasemzadeh*, and Mohamed Ahmed, "Investigating the Feasibility of Using SHRP2 Naturalistic Driving Study to Support Data Requirements of VSL Decision Making Algorithms and its Application in Connected Vehicle". Proceedings of the **23rd Intelligent Transportation Systems World Congress (ITSWC), 2016**.
- 13. Ali Ghasemzadeh*, and Mohamed Ahmed, "Estimating the Impacts of Adverse Weather Conditions on Work Zone Crash Severity using the SHRP2 Roadway Information Database". Proceedings of the **14th World Congress of Transport Research**, **2016**.
- Britton Hammit*, Mohamed Ahmed, and Rhonda Young, "Feasibility of Using Connected Vehicle Data for Rural Roadway Weather Conditions in Wyoming". Proceedings of the 95th Transportation Research Board Annual Meeting, 2016.

Questions?

I-80 VSL System Wyoming, Dec. 2014

Dr. Mohamed M. Ahmed, PE mahmed@uwyo.edu

AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIAL

Wyoming Department of

Transportation