

Evaluate the Causal Relationship between Crash Risk and Cellphone Engagement Using Propensity Score Method

Danni Lu, Feng Guo

Virginia Tech Transportation Institute

Objectives

Background

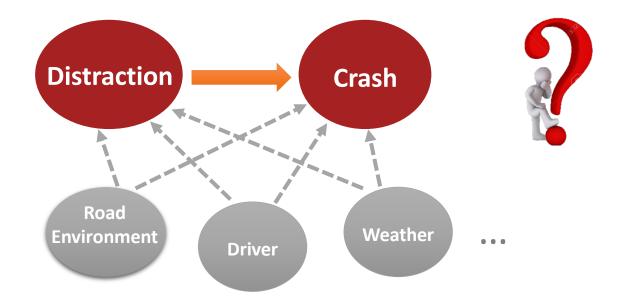
Confounders

Propensity Score

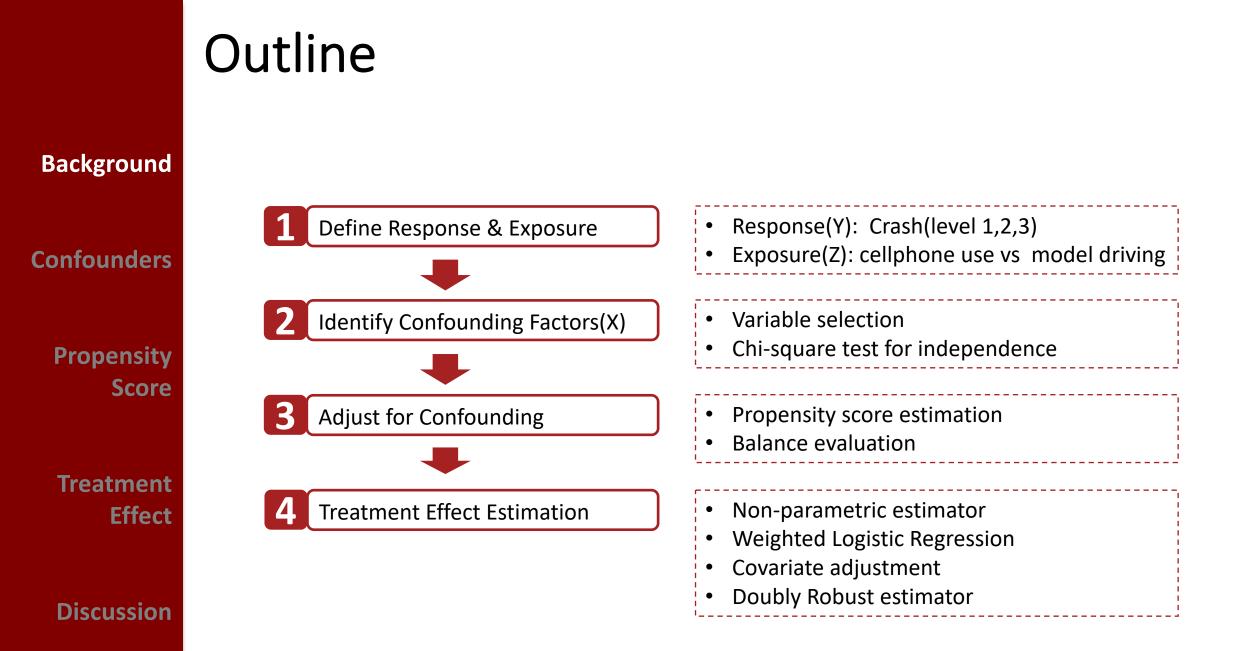
Treatment Effect

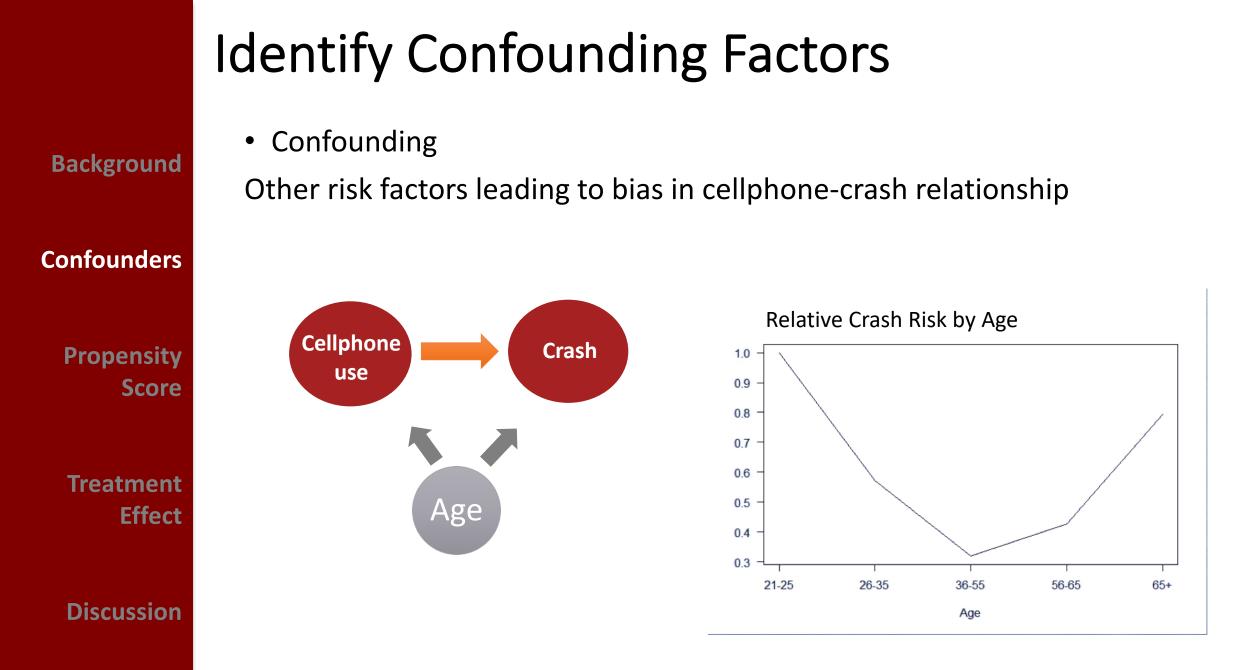
Discussion

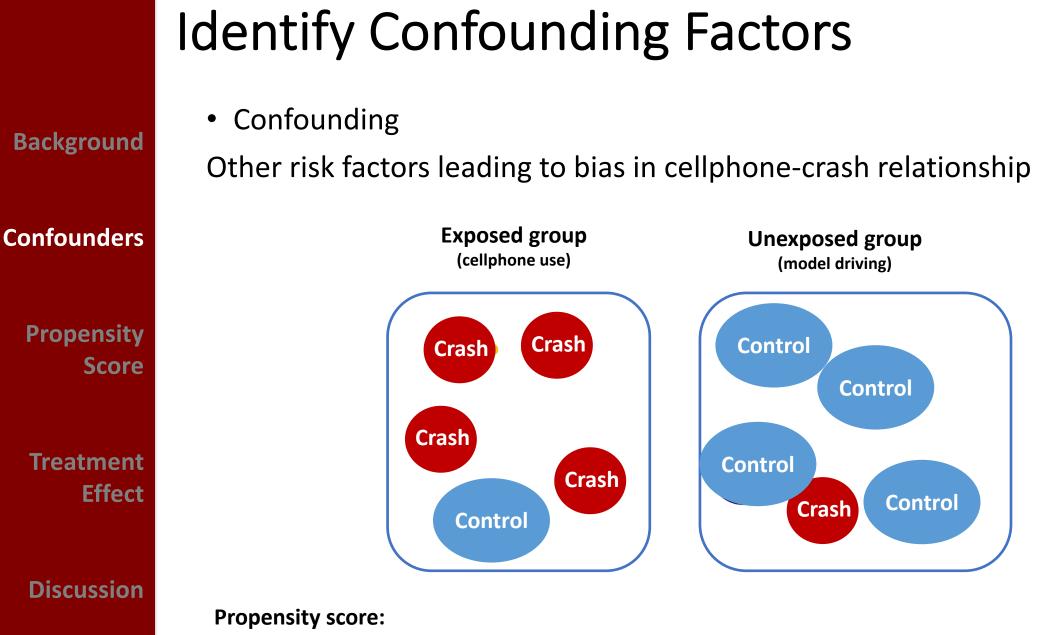
Evaluating the causal relationship between distraction (cellphone use) and crash risk using SHRP2 NDS data



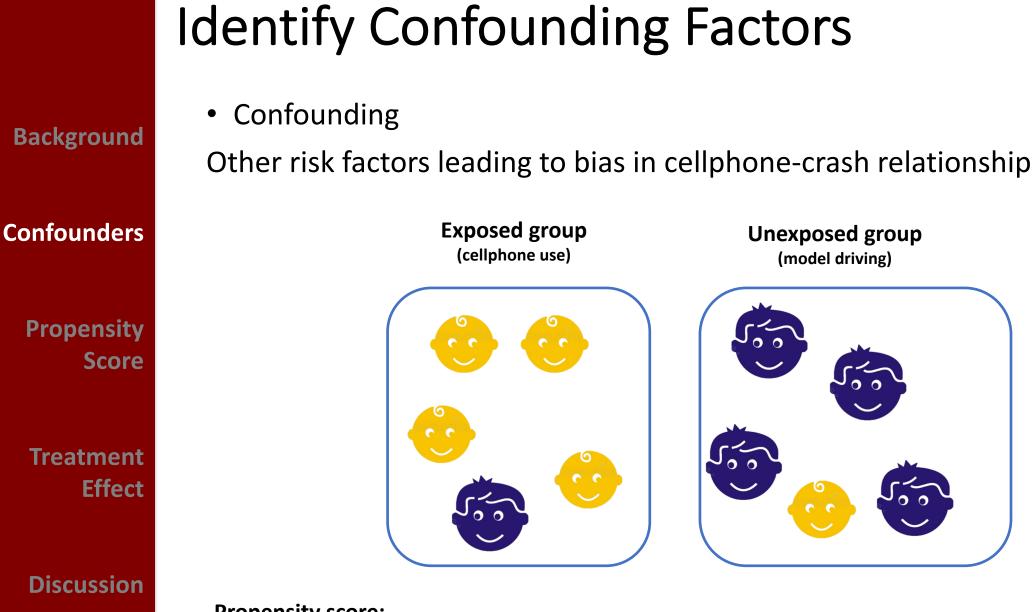
- ✓ Evaluating confounding factors
- Exploring different propensity weighting methods







The probability of being assigned to treatment(exposed group) given observed confounders



Propensity score:

The probability of being assigned to treatment(exposed group) given observed confounders

	Identify Confounding Factors					
Background	• Variak	ole Selection				
		Variable Type	Exposure(Cellphone)	Outcome(Crash)	Include	
Confounders		Confounder	correlated	correlated	\checkmark	
comounders		Instrumental variable	correlated		X	
Propensity		Related to outcome only		correlated	\checkmark	
Score		Related to neither			X	
Treatment Effect	 Effect Not include instrumental variables to avoid potential bias due to unmeasured confounding, as well as increase variance 					
Discussion						

Identify Confounding Factors

Background

Confounders

• Chi-square test to identify variables correlated with outcomes and exposure

	Covariate	p value Cellphone use	p value Crash	Confounder	Instrumental Variable	Include
	Traffic density	0.10	0.00			True
Propensity	Relation to junction	0.97	0.00			True
Score	Lighting	0.00	0.00	True		True
	Age group	0.00	0.00	True		True
	Weather	0.08	0.00			True
	Surface condition	0.02	0.00	True		True
Treatment	Traffic flow	0.14	0.00			True
Effect	Intersection influence	0.74	0.00			True
LIIECU	Construction zone	0.47	0.03			True
	Income	0.00	0.04	True		True
	Locality	0.36	0.00			True
Discussion	Sex	0.00	0.60		True	False

Confounders

Propensity Score

Treatment Effect

Discussion

Propensity score estimation

• Propensity score

Conditional probability of being engaged with cellphone use for event *k* of driver *h*

$$e_{hk} = \Pr(Z_{hk} = 1 | \boldsymbol{X}_{hk})$$

- Z_{hk} : cellphone use status of event k, driver h;
- **X**_{hk} : observed covariates of event k, driver h;

• PS Estimation

$$logit(e_{hk}) = \delta_h + X_{hk} \beta$$

 δ_h : random effect of driver difference

eta: regression coefficients

Confounders

Propensity Score

Treatment Effect

Discussion

Propensity score weights

• Weights:

○ Inverse probability weight(IPW)
 ○ Target: population average treatment effect (ATE)
 ○ w_{hk} = ^Z/_{ê_{hk}} + ^{1-Z}/_{1-ê_{hk}}

○ ATT weight

• Target: average treatment effect on the treated(ATT) • $w_{hk} = Z + \frac{(1-Z)\hat{e}_{hk}}{1-\hat{e}_{hk}}$

• ATO weight • Target: average treatment effect on the overlap population(ATO) • $w_{hk} = (1 - \hat{e}_{hk})Z + (1 - Z)\hat{e}_{hk}$

Balance Evaluation

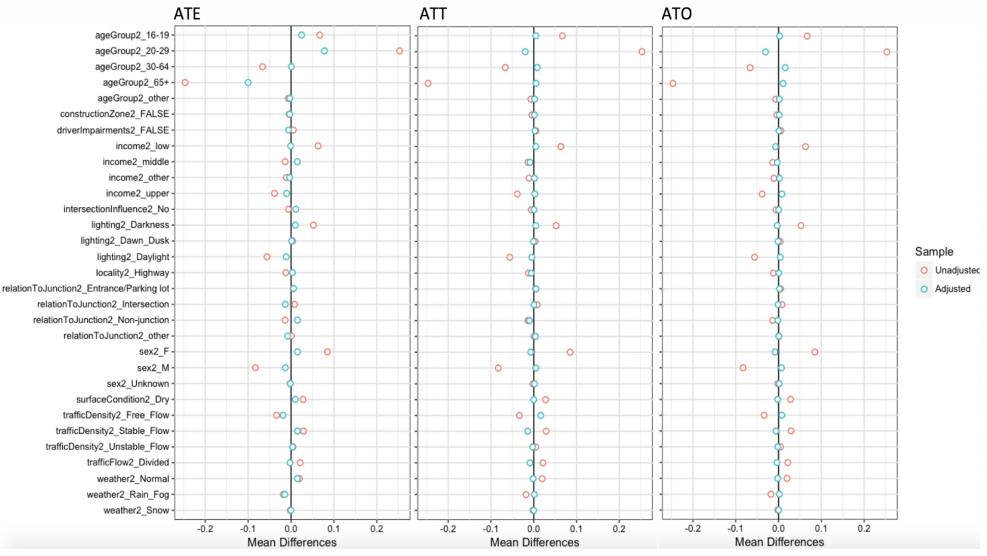
Background

Confounders

Propensity Score

Treatment Effect

Discussion



Standard Mean Covariate Prevalence Differences between Cellphone Use and Model Driving Groups Before/After Adjustment

Treatment Effect

Propensity

Score

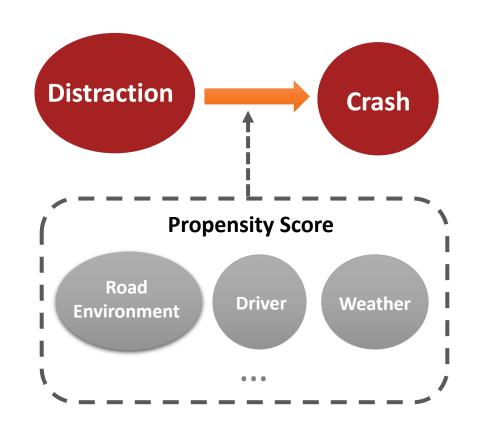
Background

Confounders

Discussion

Treatment effect estimation

 What's the crash odds ratio of cellphone distraction vs model driving?



Non-Parametric Methods:

- Non-parametric marginal estimator
- Non-parametric clustered estimator

Parametric Methods:

- Weighted logistic regression
- Doubly Robust estimator
- Covariate adjustment

	Treatment effect	estimation
Background	Methods	
		How to estimate treatment effect
Confounders	Non-parametric marginal estimator	Weighted average of the exposed group
Propensity Score	 Non-parametric clustered estimator 	 Two steps: Driver level weighted treatment effect; Aggregate by driver;
	Weighted GLM	Build a weighted regression model with respect to the expected crash rate given driver and exposure status
Treatment Effect	Doubly Robust estimator	Use parametric model to augment non-parametric estimates
	Covariate adjustment	include propensity score based weight as a additional continuous variable in the logistic regression
Discussion		

Confounders

Propensity Score

Treatment Effect

Discussion

 \odot Challenges in estimating OR in this study:

- Characteristics of SHRP 2 case-cohort data
 - Correlated

Discussion

- Driving behavior vary for drivers
- Clustered estimator; random effect model
- Rare event, Rare exposure
 - Crash is rare event, binary response variable has more zeros than ones. The prevalence of cellphone use engagement is low.
 - Doubly Robust estimator fails.

Confounders

• Methods comparison

Discussion

	Advantage	Disadvantage	SHRP2 NDS Data
Non-parametric marginal estimator	Easy to calculate	can not address for bias due to between cluster difference; Require PS model correctly specified	Unable to exclude driver effect
Non-parametric clustered estimator	Exclude bias due to between cluster difference	Require each cluster has at least one exposed event and un-exposed event; Require PS model correctly specified	Need to exclude drivers with only one exposure status
Weighted GLM		Require PS model correctly specified	Recommended
Doubly Robust estimator	Unbiased when either outcome model or propensity score model is correct	When outcome variable is binary, can not guarantee positive estimation	Negative estimates for rare event rare exposure data
Covariate adjustment		Can not distinguish different estimands	Target population not clear

Propensity Score

Treatment Effect

Discussion

Thank you!

International Symposium on Naturalistic Driving Research

