

Fifth International Symposium on Naturalistic Driving Research

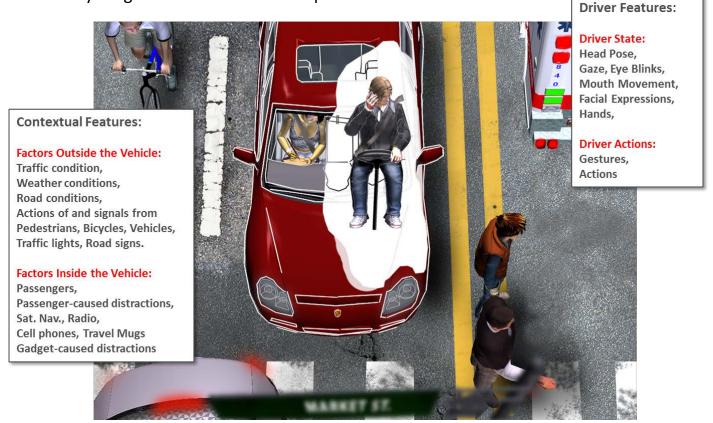
DCode: A Comprehensive Automatic Coding System for Driver Behavior Analysis

FHWA Exploratory Advanced Research - Topic 2A

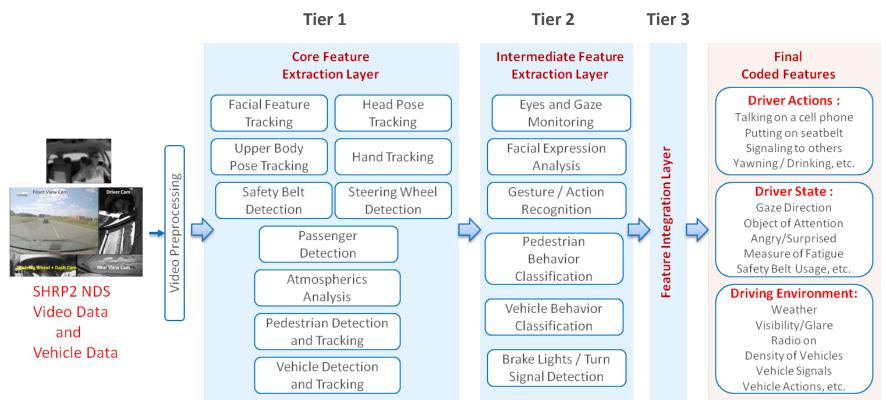
Amir Tamrakar, PI

Gregory Ho, Jihua Huang, David Salter, Avi Ziskind, Chenyang Zhang, Yin Xia, Yilin Song , Wei Li

SRI International, Princeton, NJ


August 30, 2016 Site: VTTI, Blacksburg, VA

The Need


- SHRP2
- Naturalistic Driving Study (NDS) under the SHRP2 program
 - Collected normal driving behavior data
 - 3,400+ drivers
 - 5,400,000+ Trip
 - ~1 Million hours of video data + other metadata
- There is way too much data for manual coding!
- FHWA EAR 2A program (2014-2016) was created to help explore the feasibility of automated coding of SHRP2 NDS
 - Explore existing technologies
 - Develop new technologies

DCode: Technology Concept

- **Goal:** Assist in the automatic coding of features relevant to safety researchers interested in using the SHRP2 NDS data using Computer Vision techniques.
- A comprehensive driving behavior study will need to take into account not only the actions and behaviors of the driver but also the "*context"* in which those actions are performed
 - Context = everything external to the driver's person

DCode: Technical Plan Overview

- Lane trackers,
- Accelerometers,
- GPS,
- Cell phone records,
- Vehicle operation data
- Companion Roadway Information Data.

SHRP2 Dataset Automated Coding Challenges

- Unique challenges for computer vision algorithms
 - Very low resolution (240x356 wide FOV, 70x70 pixels on the face)
 - Heavy compression artifacts (gets worse with fast illumination changes)
 - Uncontrolled Illumination
 - High degree of influence from external factors
 - Extremely poor contrast (often completely saturated)

480x354

- Fast lighting changes
- Poor illumination for night time sessions
- Camera viewpoints
 - Camera placed at an angle

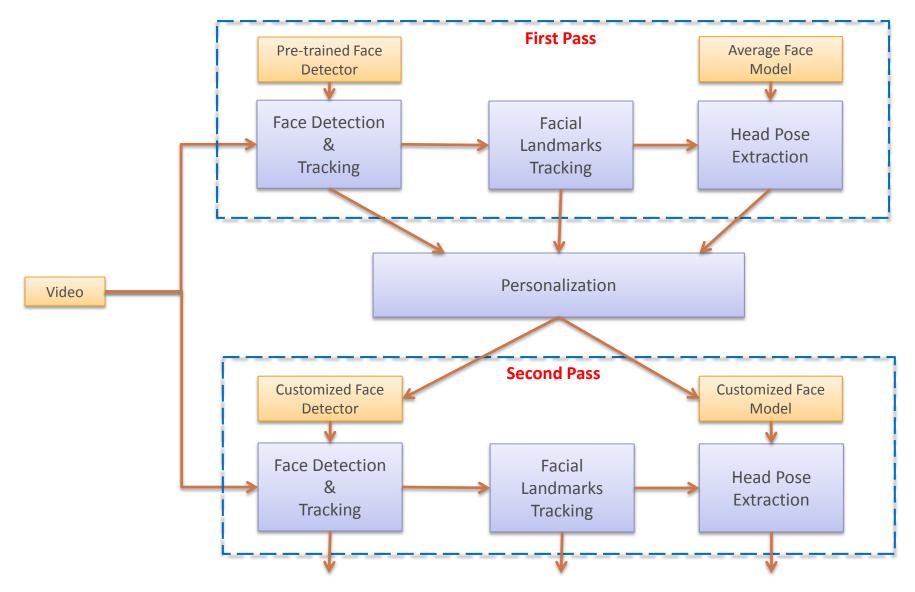
360x124

SHRP2 Raw Video Data

240x356

360x124

Core Feature: Driver's Face Detection and Tracking



Some video preprocessing

Our Approach to Customized Face Tracking

SHRP2 Data Annotations For Evaluation

- Our dataset is the SHRP2 24-car study (HPV dataset)
- We are using the metadata contained in VTTI's HPV mask public dataset (along with ORNL's Matlab scripts and data formats)
 - More than sufficient for evaluating driver tracking algorithms.
 - Annotated segments are harder than average because of prompted tasks.

		-	
SHRP2 HPV	General Stati	stics	
Hi-res Face Video	Total Duration of all the video	17.98 hrs	
	Total # of frames processed	970,847	
Dataset			
			and the second second
SHRP2 HPV			the state of the s
Hi-res Face Video	General St	atistics	
Annotated Clips	Total Duration of all the video	1.38 hrs	
1	Total # of frames processed	74978	
Subset			
	7% of all		

frames

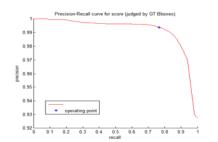
44 videos -- 22 static trial vides and 22 dynamic trial videos

Precision-Recall Curves for Face Detection

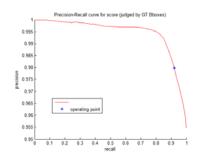
Bounding Box overlap ratio := $min \left(\frac{Area of Overlap}{Area of GT Bbox}, \frac{Area of Overlap}{Area of Detection Bbox} \right)$

 $Precision Rate := \frac{\#of Faces that were correctly "detected"}{Faces that were correctly "detected"}$

of detections where bbox overlap > match threshold and score > threshold


of detections where score > score threshold

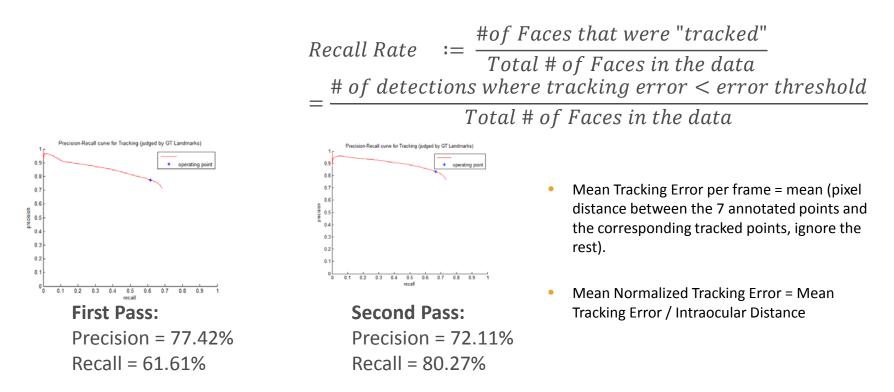
 $\begin{aligned} & \textit{Recall Rate} \quad \coloneqq \frac{\#of \;\textit{Faces that were "detected"}}{Total \; \#of \;\textit{Faces in the data}} \\ & = \frac{\#\;of\; detections \;\textit{where score > score threshold}}{Total \; \#\;of \;\textit{Faces in the data}} \end{aligned}$



Second Pass: Recall = 96.06% and Precision is 96.54%.

Bbox match threshold = 0.50

Precision-Recall Curves for Facial Landmark Tracking


Tracking Precision Rate :

= *#of Faces that were accurately "tracked"*

Total # of Faces that were "detected"

of detections where tracking error < error threshold and score > threshold

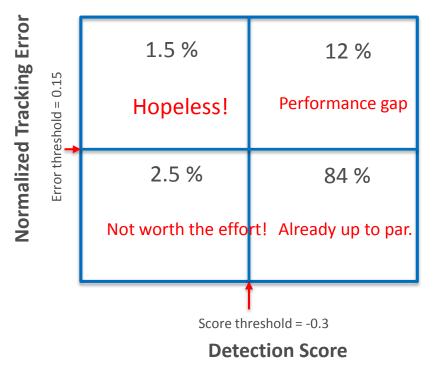
of detections where score > score threshold

Success Criteria: Detection score > -0.30, normalized tracking error < 0.15

Summary of Face Detection and Tracking Performance

	Dataset	Approach	Success Rate	Median Score	Precision	Recall
Face	HPV hi-res	First Pass	79.34%	0.38	99.26%	79.58%
Detection		Second Pass	95.66%	1.45	96.54%	96.06%
Performance	SHRP2 lo-res	1X First Pass	67.22%	0.07	99.64%	64.19%
renormance		1X Second Pass	97.99%	1.36	98.24%	98.59%
		2X First Pass	79.52%	0.37	99.14%	77.46%
		2X Second Pass	93.49%	1.17	98.82%	92.47%

Face Tracking Performance

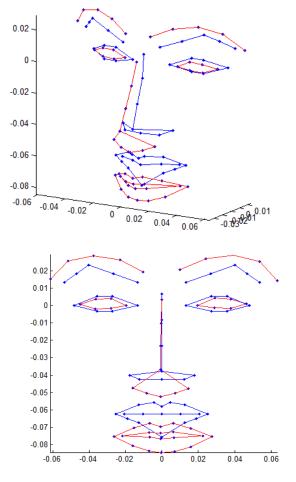

We are able to track the facial features in the SHRP2 lo-res videos fairly well but we are still about 10% below the performance of the hi-res videos (HPV).

Dataset	Approach	Precision	Recall	
HPV hi-res	First Pass	77.4%	61.6%	
HPV III-IES	Second Pass	72.1%	80.3%	
	1X First Pass	51.3%	32.9%	
SHRP2 HPV lo-res	1X Second Pass	39.2%	38.6%	
SHRPZ HPV 10-res	2X First Pass	65.4%	49.1%	
	2X Second Pass	69.1%	71.6%	

- HPV hi-res : 720 x 480
- SHRP2 (HPV) lo-res: 1X = 356 x 240, 2X = 712 x 480

Performance Analysis Quad Chart : End of Program

old = 0.15	Score < threshold Error > error threshold True Negative Hopeless!	Score > threshold Error > error threshold False Positive Performance gap	
Error threshold = 0.15	Score < threshold Error < error threshold False Negative	True Positive	
		Already up to par.	

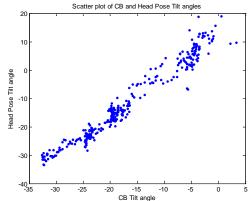


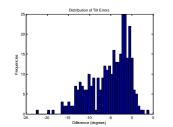
Core Feature: Head/Face Pose Tracking Customizing the Face Model

 Reconstruct Face Model from different views of the driver

Collection of tracked landmarks in different poses

[B] Original average model[R] Customized face model


Evaluation of Head Pose Accuracies



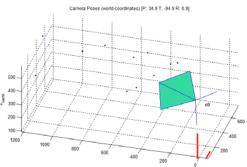
Scatter plot of CB and Head Pose Pan angles 30 20 10 Paad Pose Pan angle -10 -20 -30 -40∟ -40 -30 -20 -10 10 20 30 0 40 CB Pan angle Distribution of Pan Errors Error Distribution

> 2 4 Difference (degrees)

Error Distribution

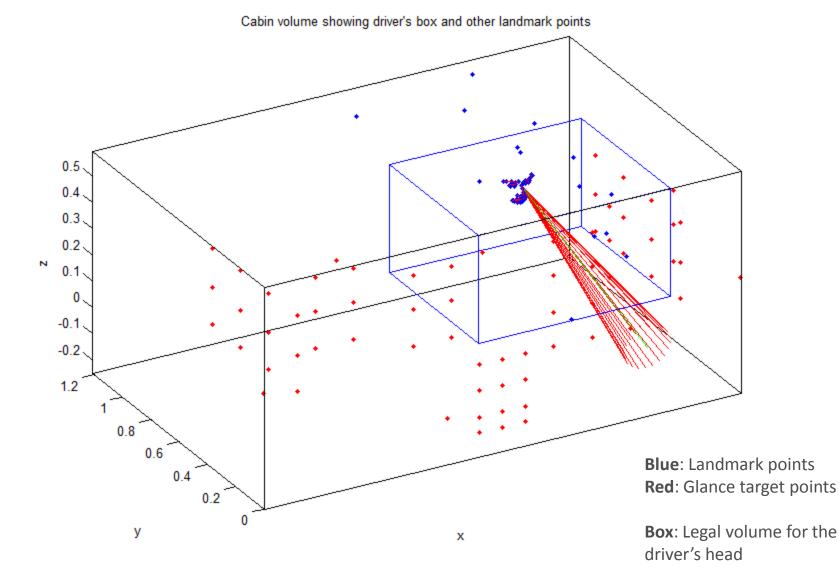
Tilt

Errors:

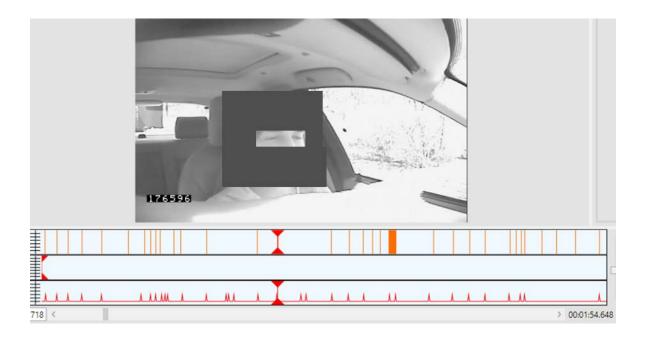

Pan:

std = 2.24 deg

Tilt: std = 4.70 deg


Driver View Camera Extrinsic Calibration Approach

- Calibrate camera relative to the vehicle cabin coordinates
 - Needed for glance target tracking and other estimations that require better geometry
- Kinect and Laser scans available from vehicle interior
 - Laser scans go further into the cabin but point were hard to read
 - Kinect scans were easier to work with but were not extensive
- Vehicle used in the HPV study is the Saab Model
- Camera Intrinsic Matrix is known (from ORNL)


Final Coded Feature: Using Head/Face Pose to Compute 3D Glance Target Vectors (Gaze Monitoring)

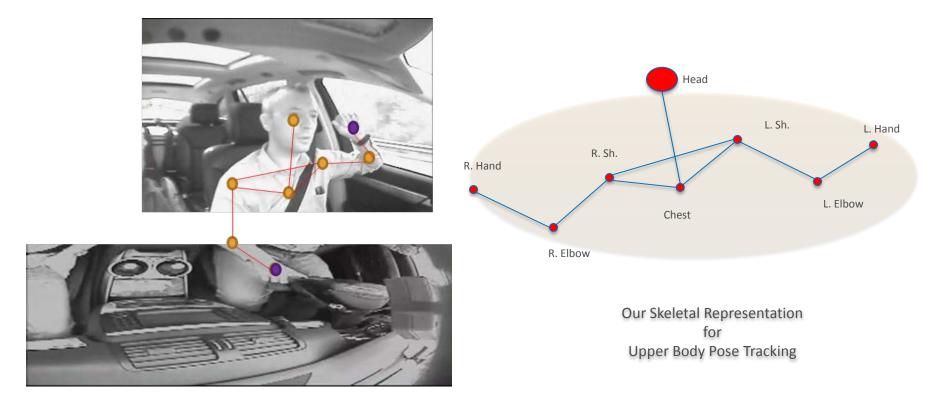
08/30/2016

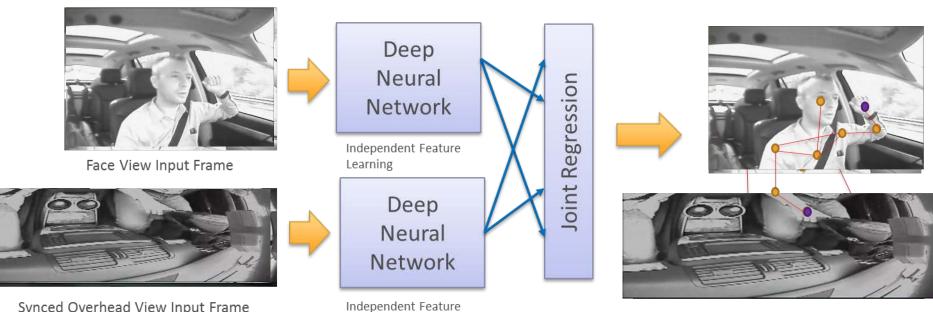
Intermediate Feature: Eye Blink Monitoring

- Eye Blink Detection
 - Currently based solely on the tracked landmark features
- Used for Blink-Rate Estimation, percentage eyes closed, eye close durations, etc.

Intermediate Feature: Facial Expression Analysis

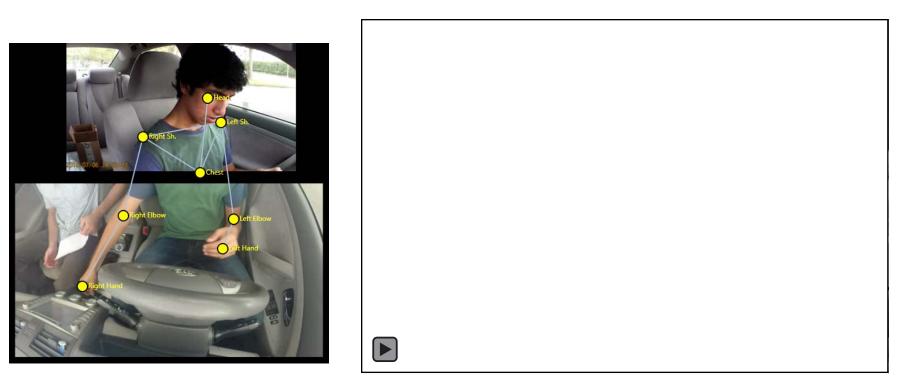
- Goal:
 - Try to identify driver anxiety (nervous driving), anger (road rage), etc.
- Seven standard facial expression classes were trained using the Cohn-Kanade+ dataset
 - Neutral, Angry, Contempt, Disgust, Fear, Happy, Sadness, Surprise
- Qualitatively, the only expression that seems to arise in this data is "happy" when the drivers are chatting with the person in the passenger's seat.




Core Features : Driver's Hands and Upper Body Pose Tracking

- Goal:
 - Track upper body joints skeleton (to ultimately track driver activity)
 - Jointly from the frontal face view video and the overhead hands view video of the SHRP2 dataset

Technical Approach: Deep Pose Algorithm


Learning

Synced Overhead View Input Frame

Output Skeletal Structure

Upper Body Pose Tracking Examples

Local Driving Data

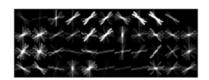
Identity Masked (i.e., codings only) visualization of one example SHRP2 video)

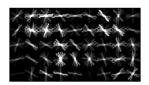
This video shows a visualization of the driver video using only the low-level body tracking information

• facial landmarks, head pose and upper body pose skeleton.

Generating Identity Masked Videos From the Tracked Data (DMask)

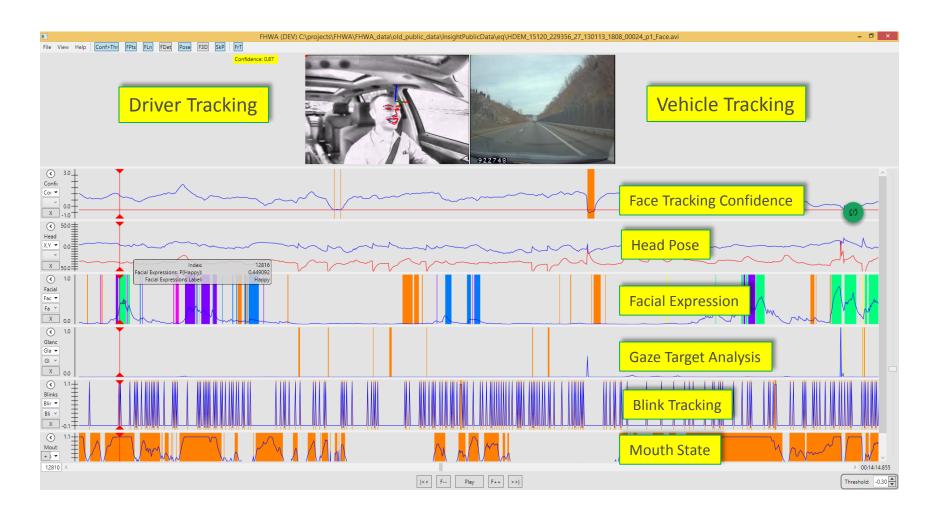
This video shows the motion-transferred virtual avatar rendered over the original video.


Intermediate Features: Driver Gesture/Action Recognition



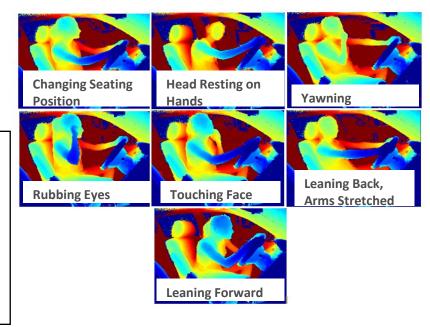
Class	True positive	True Positive + False Positive	True positive + miss detection	Recall	Precision
Make phone call	35	56	42	(83.33%)	(62.5%)
Put on glasses	25	28	29	(86.21%)	(89.29%)
Driving (default)	24	(35	29	(82.76%)	(68.57%)
Adjust mirror	10	12	14	(71.43%)	(83.33%)
Talk to passenger	37	44	44	(84.09%)	(84.09%)
Drink from a cup	24	26	33	(72.73%)	(92.31%)
Rest arm on window	18	20	23	(78.26%)	(90%)
Put on safety belt	25	27	29	(86.21%)	(92.59%)
Take off safety belt	23	32	28	(82.14%)	(71.88%)
Look back – backing up	36	38	41	(87.80%)	(94.74%)
Touch face	24	34	40	(60%)	(70.59%)

Core Contextual Feature: Vehicle Detection and Tracking


Core Contextual Feature: Vehicle Detection and Tracking

Intermediate Feature: Brake Lights/Turn Signal Detection

DCode End Product: Screenshot of Our DCode Visualization Software Showing Various Automatically Extracted Codings



Lessons Learnt and Recommendations: A Computer Vision Perspective

- Video resolution:
 - Tracking performance is a function of resolution up to a point, beyond which the return starts to diminish
 - Resolution vs. FOV: (at least 400x400 pixels on the face)
- Camera position has an impact on the accuracy of tracking
 - Rear view mirror vs steering column vs A-pillar
 - Bottom-up view is better for eye (gaze) tracking (instrument panel, center console, cup holder, cell phones, etc.)
- Illumination management
 - Filter out ambient light as much as possible and use internal illumination
 - Easier to control the quality of the data
 - Helps with managing the glare on glasses.

Lessons Learnt and Recommendations: A Computer Vision Perspective

- Real-time systems (OTS) vs. raw data recording systems (post processing)
 - OTS DMS systems (option to record the metadata only, lower data rates, no legal hassles)
 - Offline data processing allows us to use multi-pass and non-causal data processing approaches, adapt algorithmic parameters for feature extraction (automated coding)
- RGB-d sensors (depth sensing cameras)
 - Allows for more robust upper-body tracking for driver activity monitoring

Thank you.

Headquarters: Silicon Valley

SRI International 333 Ravenswood Avenue Menlo Park, CA 94025-3493 650.859.2000

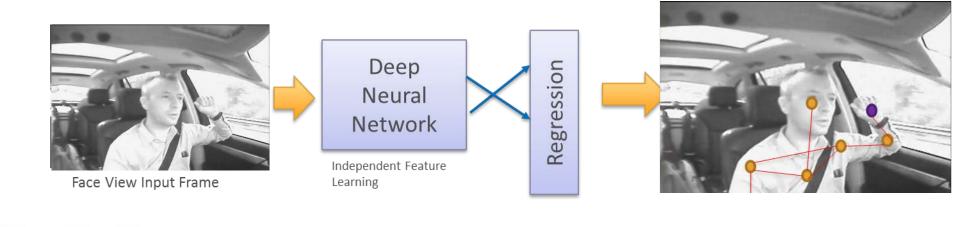
Washington, D.C.

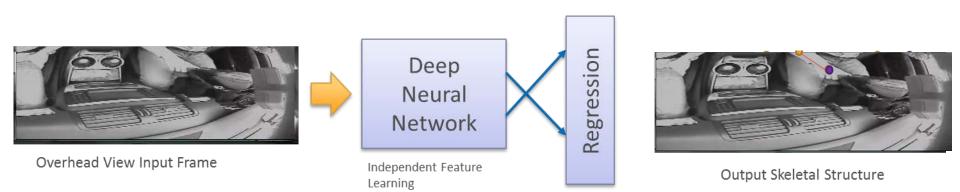
SRI International 1100 Wilson Blvd., Suite 2800 Arlington, VA 22209-3915 703.524.2053

Princeton, New Jersey

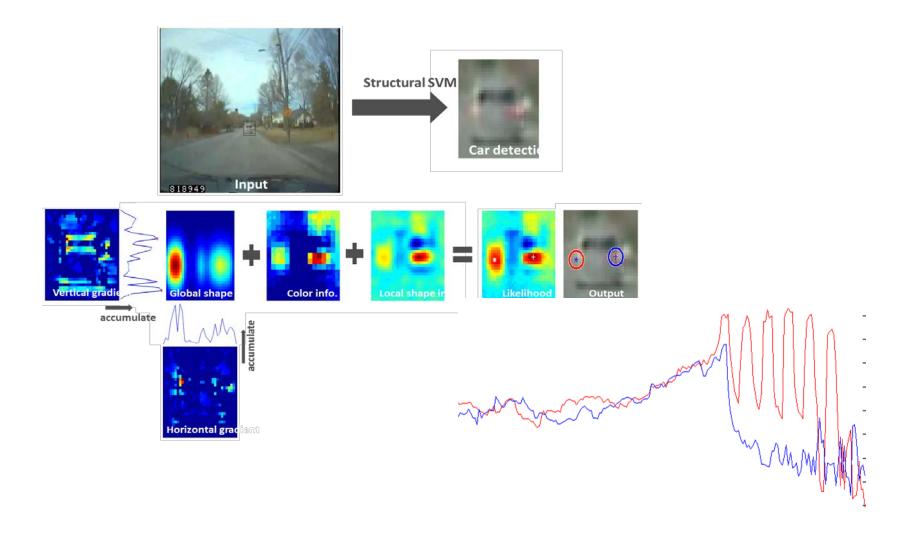
SRI International Sarnoff 201 Washington Road Princeton, NJ 08540 609.734.2553

Additional U.S. and international locations


www.sri.com


FHWA Strategic Highway Research Program -2 (SHRP2)

- SHRP2 was established by Congress to investigate the underlying causes of highway crashes and congestion in a short-term program of focused research.
- The objective was to identify countermeasures which will significantly improve highway safety through an understanding of driving behaviors.
- Naturalistic Driving Study (NDS) under the SHRP2 program
 - Collected normal driving behavior data
 - 3,400+ drivers
 - 5,400,000+ Trip
 - ~1 Million hours of video data + other metadata
 - There is way too much data for manual coding!
 - FHWA EAR 2A program was created to help develop technologies for automated coding.


Current Implementation:

Overhead View Turned out to be too low quality!

Intermediate Contextual Feature: Brake Lights/Turn Signal Detection

