

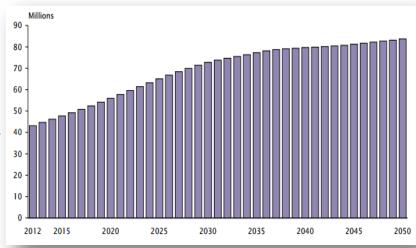
Angela E. Kitali, Kelvin S. Machumu, Thobias Sando University of North Florida Jacksonville, Florida

The Fifth International Naturalistic Driving Research Symposium Blacksburg, Virginia August, 30th 2016

Outline

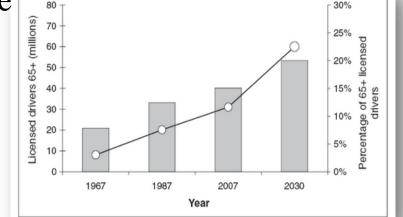
- Introduction
- Objective of the study
- Data collection
- Descriptive Statistics
- Vissim modeling
- SSAM
- Results and Analysis
- Conclusions
- Recommendations and Opportunities

Introduction


Aging population in US

• 2050 projection (*National Highway Traffic Safety Report*) : doubles 2012 aging population

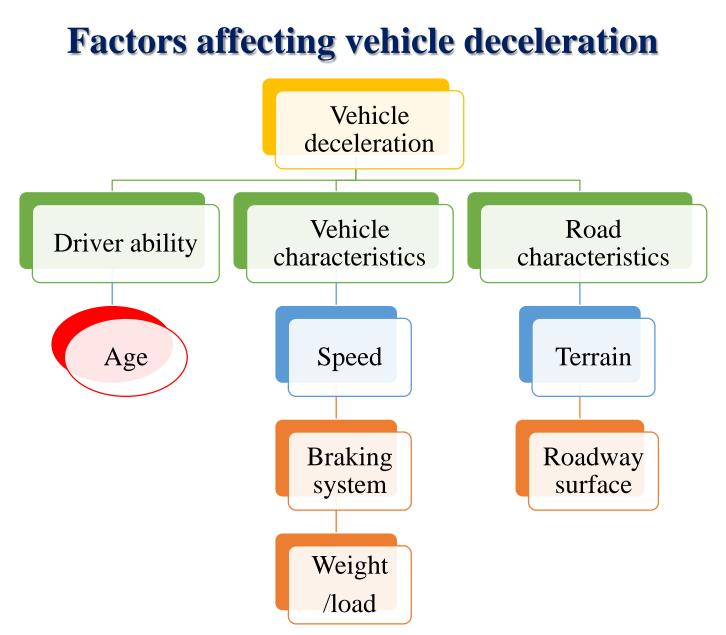
- 32.5% of Florida's population will be older (60+) by the year
 2030
- An increase of 34% from 2012


Projected Growth in U.S. Population Age 65+

Introduction Cont...

Currently, 65+ occupy 11% of driver population in US

Florida - licensed drivers over the age 65 are almost 20%



Number and percentage of drivers (65+) in the U.S. driver population

Decline: sensory, cognitive or physical function

Florida traffic crash report -11.3% increase in crashes involving elderly in Florida (2008 to 2012)

30%

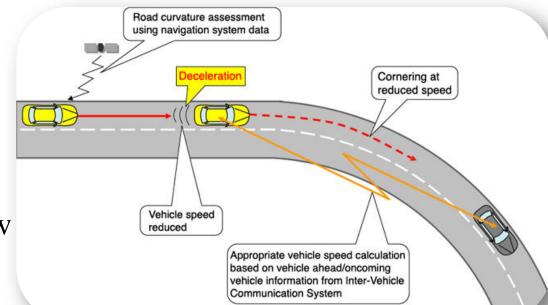
Introduction Cont...

Differential deceleration

Vehicle deceleration is observed to be a function of driver's age among other factors:

- Young drivers are more likely to engage in risky driving habits;
 - ✓ Speeding up
 - ✓ Tailgating
- Older drivers are more likely to be defensive;
 - ✓ Decelerating gently

Vehicle deceleration: Application


- Modeling
 - ✓Traffic simulation
 - ✓ Instantaneous fuel consumption rate
 - ✓ Vehicle emission
- Traffic elements
 - ✓ Length of yellow light at Intersection
 - ✓SSD at intersection
 - ✓ Sign position
 - ✓ Clearance and change interval
- Geometric element design
 - ✓ Auxiliary lanes
 - ✓ Freeway ramps

Vehicle deceleration Cont...

Common deceleration maneuvers:

- At intersection, during onset of
 - yellow phase
- Sharp corners
- Upgrades
- Congested traffic flow
- Pedestrians crossing

• Changing speed following the speed

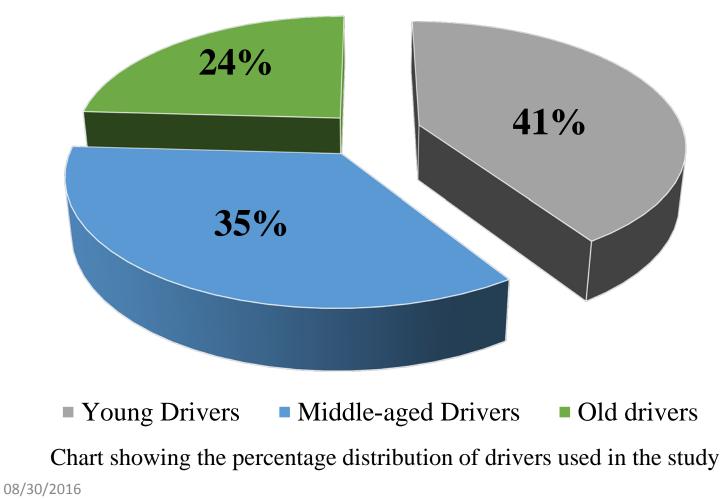
limit from one facility to the other

Objectives of Study

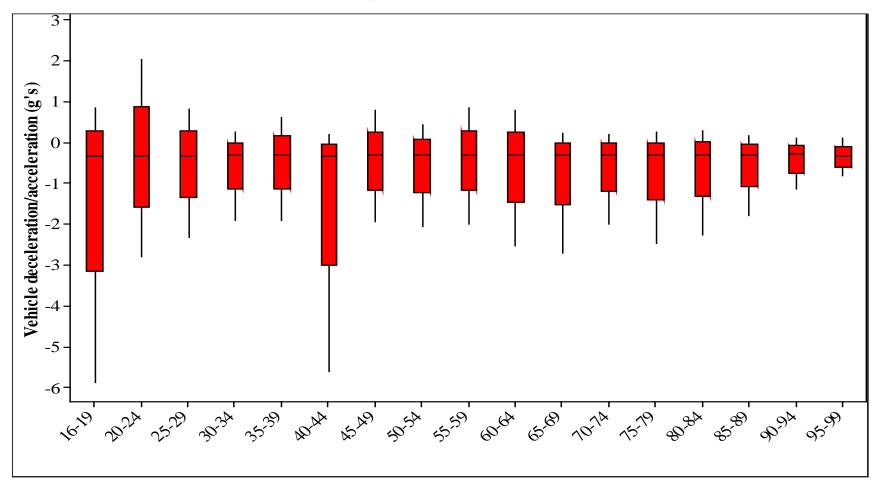
- To examine the effects of driver age on vehicle deceleration rate and how it affects
 - ✓ Safety
 - ✓Travel time
- Comparing the existing traffic flow condition with vehicles having uniform smooth deceleration maneuvers

Data Collection

Data used to model the intersections are obtained from:


- Naturalistic driving study data: 2010-2013
 - ✓ 401 to 646 participants
 - ✓ 75,500 trips

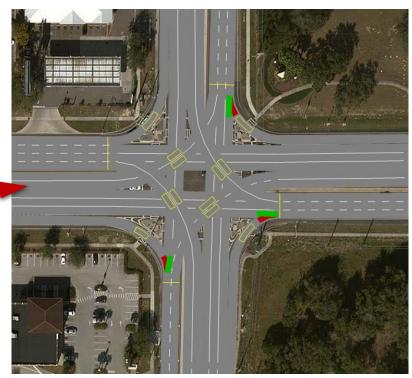
The selected corridor has 4 signalized intersections I. Bruce B Downs Blvd & E Fletcher Avenue II. Bruce B Downs Blvd & USF Holly Drive III.Bruce B Downs Blvd & USF Pine Drive IV.Bruce B Downs Blvd & E Fowler Avenue


Bruce B Downs is a corridor with leading severe injury crash locations in Hillsborough County (Source: Tindale-Oliver and Associates Incorporation, 2013)

Descriptive statistics

The data were categorized into three age groups:

Descriptive statistics



Maximum deceleration and acceleration based on driver's age group

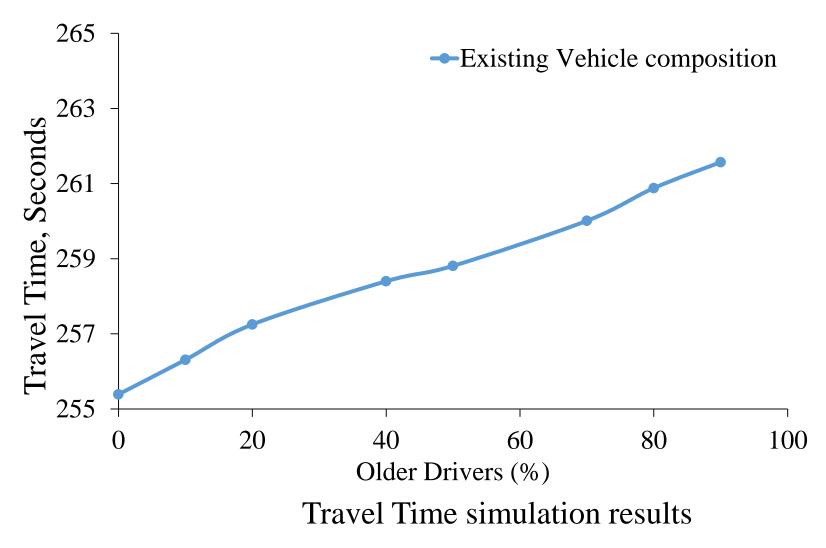
VISSIM modeling

Layout of one of the intersection modeled in VISSIM taking into account all parameters; reduced speed area, no overtaking area, desired speed, detectors and lane width and configuration etc.

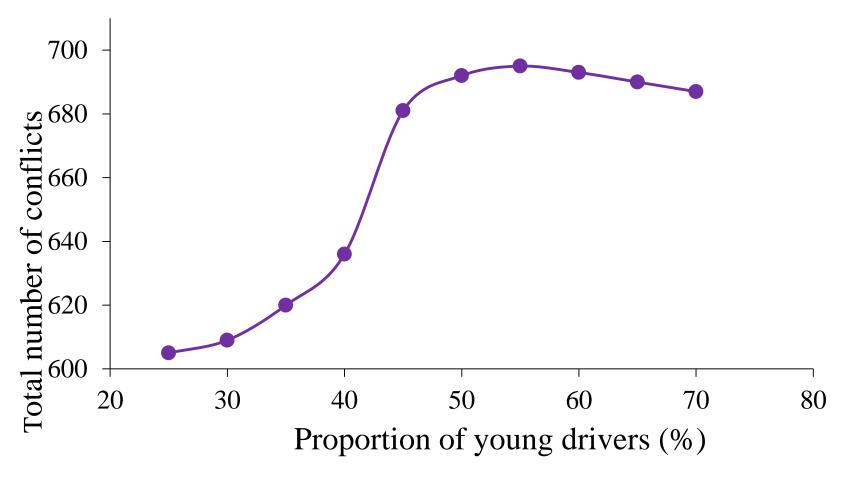
VISSIM modeling

Vehicle characteristics

- Deceleration
- Acceleration
- Speed profiles


Calibration based on FDOT simulation guidelines

Output parameters


- Travel times & delays
- Conflicts trajectory files (.trj)

- Results obtained are the average of 10 simulation run performed
- Percentage of older drivers
- Evening peak hour (4 5) pm

Simulation results

Simulation results

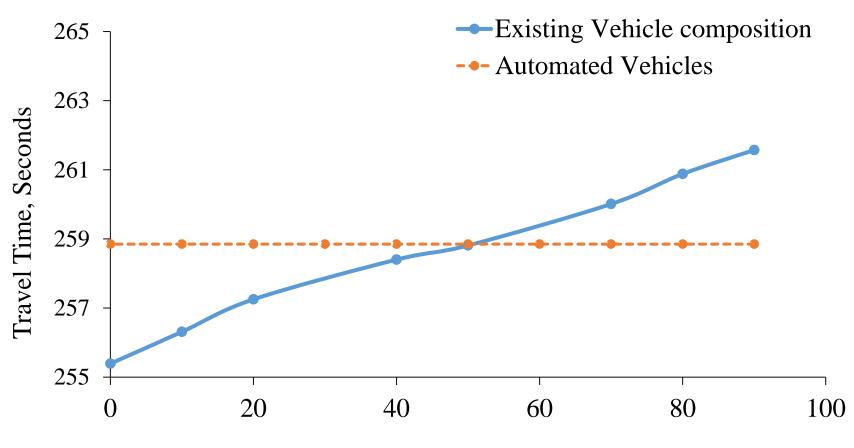
Relation between total number of conflicts and proportion of young drivers

Conclusions

• Old drivers exercise lower deceleration rates than young drivers;

✓ Increase travel times & delays

• Young drivers tend to decelerate at higher rate than old drivers;


✓ Increased number and severity of conflicts

- Presence of drivers with differential deceleration maneuvers at intersections increase number and severity of conflicts
- Automated vehicles vehicles with automatic braking systems;

✓ Improves traffic flow travel time -

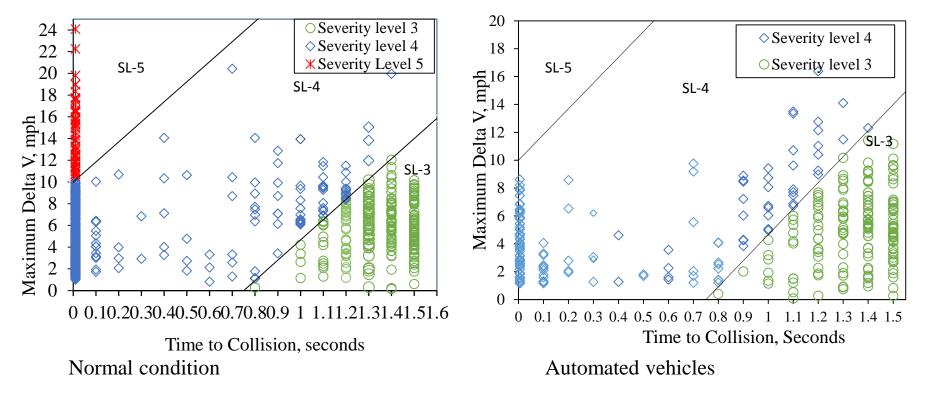
✓ Reduce conflicts

Due to differential vehicle deceleration maneuvers

Older Drivers (%)

Travel Time simulation results: comparison between existing vehicle composition & automated vehicles

Conflict results-paired t-test


SSAM Measurement	Mean (BV)	Var. (BV)	Replications (BV)	Mean (AV)	Var. (AV)	Replications (AV)	t value	t critical	Mean Difference	Significant
TTC (second)	0.57	0.40	3280	0.55	0.42	1730	-0.47	1.66	-0.01	NO
PET (second)	0.59	0.96	3280	0.67	1.10	1730	1.99	1.66	0.09	YES
MaxS (mph)	23.17	70.55	3280	17.47	44.86	1730	-8.60	1.66	-5.71	YES
DeltaS (mph)	11.28	21.44	3280	10.06	21.82	1730	-2.80	1.66	-1.22	YES
DR (mph2)	-3.03	12.12	3280	-2.20	3.70	1730	2.54	1.66	0.83	YES
MaxD (mphs)	-6.85	32.33	3280	-4.45	6.37	1730	5.31	1.66	2.40	YES
MaxDeltaV (mph)	6.69	8.21	3280	5.30	1.84	1730	-5.84	1.66	-1.39	YES
	Moon	Var.	Donligations	Mean	Var.	Donligations	t	•	Mean	
Conflicts	Mean (BV)	var. (BV)	Replications (BV)	(AV)	var. (AV)	Replications (AV)	•	t critical	Difference	Significant
				(11)	(11)	(11)	value	criticui	Difference	Significant
Total	656	324	10	346	193	10	-3.03	2.92	-310	YES

• Conflict severity increase with line number, i.e. line 1 & 2 has the lowest severity

Overall severity score contour line equations

Severity level	Equation (Maximum DeltaV=)					
SL-1	(120/7)(TTC)-(390/7)					
SL-2	(55/3)(TTC)-(110/3)					
SL-3	(280/15)(TTC)-14					
SL-4	(240/13)(TTC)+10					
SL-5	20(TTC)+30					

Comparing conflicts severity level between normal condition and automated vehicles

Therefore automated vehicles saves a better way in both travel time and conflicts

