Driver Adaptation Behavior and Driving Style Classification

Xianan Huang, Shan Bao, Huei Peng, Jim Sayer

8.30.2016

The 5th Naturalistic Driving Study Symposium, Blacksburg, VA

Introduction

- Driver Adaptation Behavior: Drivers change their behavior adaptively as they integrate these new support systems into their driving routine (Sullivan, Flannagan, Pradhan & Bao, 2016);
- Identify risky driving style measures;
 - Fancher et al. (1998) studied driver's behavior change with ACC (Adaptive Cruise Control) and drivers are classified based on range rate and speed in car following scenario;
 - Guo et al (2013) defined driver class with the NEO five-factor inventory and used crash and near-crash as a measurement of aggressiveness;
 - Murphey et al (2009) defined driving behavior based on jerk and classified the drivers for online power management purposes;

Study Objectives and Tasks

- Objectives
 - To assess and quantify negative safety consequences associated with drivers' adaptively interact with different active in-vehicle safety technologies;
- Main tasks
 - Define driving style measures;
 - Evaluate and model driving style changes with crash warning systems;
 - Evaluate and model driving style changes with connected vehicle technologies;

Methods: Aggressive Behavior Measure

Principle Component Analysis

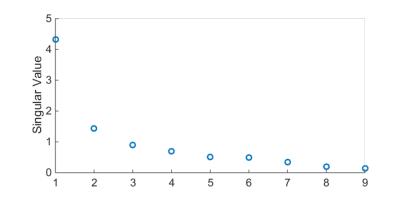
Statistical procedure that uses an orthogonal transformation to convert a set of observations of possibly correlated variables into a set of values of linearly uncorrelated variables

$$X - \overline{X}_B = U\Sigma V$$
 Principle Components U
Corresponding Singular values Σ

Centered with baseline mean $\overline{X}_{\scriptscriptstyle B}$

Factor Loading Calculation $U_k = (X - \overline{X}_B)a_k$

a_k Factor loading: Correlation coefficients between the variables and factors Key to understanding the underlying nature of a particular factor
Obtained through Pearson product-moment correlation coefficient


$$a_{k} = \frac{\operatorname{cov}(X_{B}, U_{k})}{\sigma_{X_{B}}\sigma_{U_{k}}} = \frac{E[(X_{B} - \overline{X}_{B})^{T}(U_{k} - \overline{U}_{k})]}{\sigma_{X_{B}}\sigma_{U_{k}}}$$

Methods: Aggressive Behavior Measure Cont.

Define Following Behavior based on selected variables through principle component analysis

Factor Loading for First Principle Components

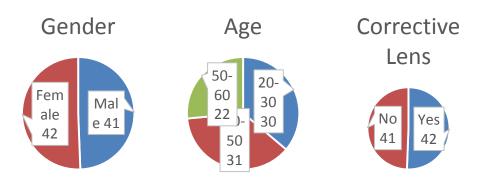
Varaibles	U(1)
Short Time Headway Ratio	0.396
Long Time Headway Ratio	-0.394
Short Range Rate Ratio	0.307
Long Range Rate Ratio	-0.332
Short TTC Ratio	0.385
High Speed Ratio	0.354
Low Speed Ratio	-0.166
Extreme Acceleration Ratio	0.309
Brake Frequency	0.296

Define Longitudinal Aggressiveness with U(1) $\lambda = (X - \overline{X}_B)a \quad \overline{X}_B$ Baseline Mean

 λ Longitudinal Aggressiveness

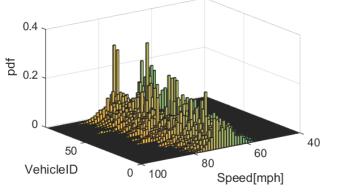
a Factor Loading of U(1)

Methods: Data on Crash Warning System


IVBSS Car Following Data Description

IVBSS: 108 Light Vehicle Drivers, 6 weeks each, 213,000 miles

Steady state highway car following


- Average Vehicle Speed > 55mph (24.59 m/s)
- Range rate <+-2 m/s
- Event length larger than 20s
- At least 30 events for baseline and 30 for treatment

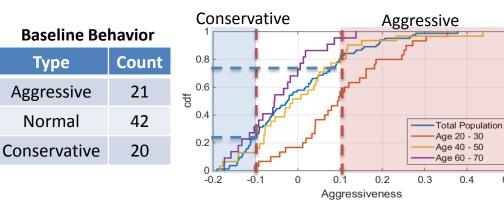
83 Drivers, 15,050 Baseline Events, 14,636 Treatment Events

Highway Car Following Position Per Minute

Speed Distribution of Highway Car Following

IVBSS Light Vehicles

- 16 vehicles each with an four prototype crash warning systems
- 7 radars, 5 video streams, GPS, >500 other signals at 10 to 50 Hz

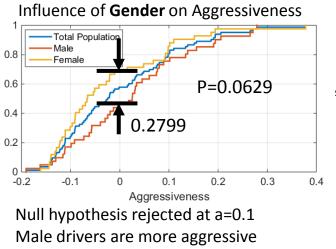


Data Viewer Tool – Highly Reconfigurable

UMTRI TRANSPORTATION RESEARCH INSTITUTE UNIVERSITY OF MICHIGAN

Results: Following Style Classification

	Р	Max Diff.
Young v.s. Middle	0.00039	0.5097
Young v.s. Old	0.00003	0.6394
Middle v.s. Old	0.3793	0.2434



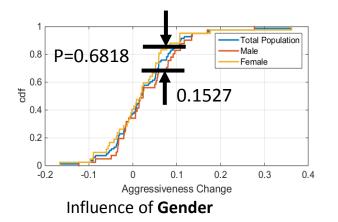
0.4

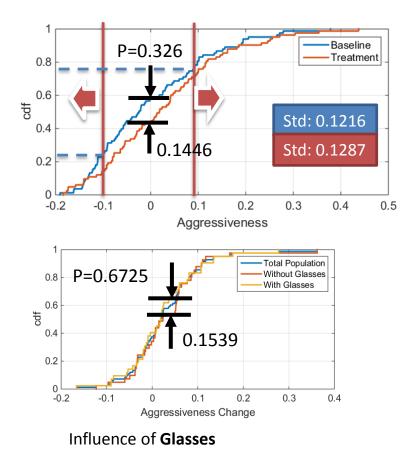
0.5

Results: Driver Characteristics

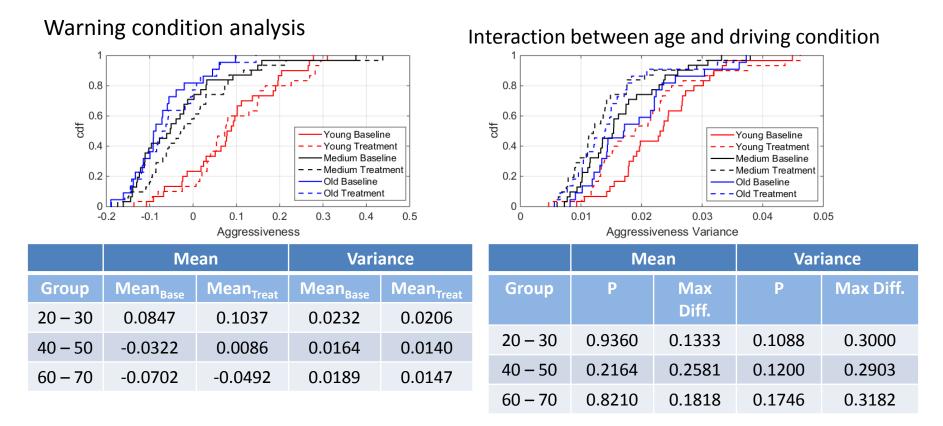
Influence of **Glasses** on Aggressiveness Total Population Without Glasses 0.8 With Glasses 0.6 P=0.8257 ğ 0.4 0.1336 0.2 -0.2 -0.1 0 0.1 0.2 0.3 0.4 Aggressiveness Null hypothesis cannot be rejected Influence of glasses is not significant

Pearson's Linear Correlation Coefficients


Aggressiveness	Age	Driving Years	Annual Mileage
1	-0.5359	-0.5356	0.1682


- Age and driving year are negative related with aggressiveness
- Annual mileage is positive related with aggressiveness

Results: Crash Warning Effects


Driving Style Analysis

Туре	Baseline	Treatment
Aggressive	21	24
Normal	42	47
Conservative	20	12

Results: Crash Warning Effects Cont.

• Mean value shows aggressiveness slightly increase, variance decrease

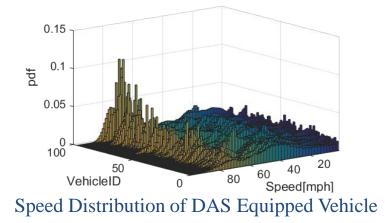
Methods: Data on Connected Vehicle Technology

Safety Pilot Model Deployment

Largest Connected Vehicle FOT led by UMTRI

Over 2,800 personal vehicles, truck fleets, and transit buses;

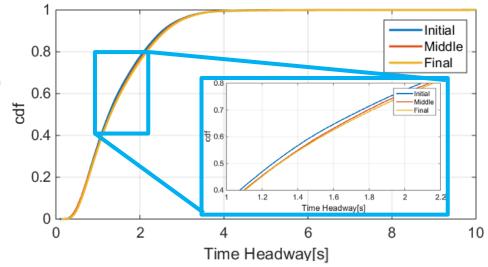
About 35 million miles or 1.2 million hours of driving;


About 140 vehicles equipped with Mobileye and DAS;

Over 3,200 events of bicyclists interacting with vehicles;

Aug. 19th,2012 - Apr 20th, 2015

Hourly Position of DAS Equipped Vehicle



Results: Driving Style Classification

Steady state highway car following

- Vehicle Speed > 55mph (24.59 m/s)
- Range rate <+-2 m/s
- Event length between 20s and 300s
- Driver with more than 250 events (87)
- 201,045 events identified
- Initial: first 50 events
- Middle: event from 150 to 200
- Final: last 50 events

Data Group	Mean[s]	Std.Dev
Initial	1.44	0.79
Middle	1.47	0.79
Final	1.48	0.79

Video Redacted

Video Redacted

Summary and Acknowledgement

- Definition of longitudinal aggressiveness provides one behavior quantification solution;
- With driver assistance functions, no evidence shows that drivers follow more aggressively;
- Male drivers were relatively following more aggressively than female drivers;
- Younger drivers had a higher value of aggressiveness when following other vehicles among the three age groups;
- More factors should be considered in evaluating individual driver/trip level;
- Sponsored by UM Mobility Transformation Center.

Thank you! shanbao@umich.edu