Evaluating the Sleeper-Berth Provision

A Preliminary Investigation into Usage Characteristics and Safety-Critical Event Involvement

Susan A. Soccolich, Myra Blanco, and Richard J. Hanowski

Advancing Transportation Through Innovation

Outline

- Background
- Description of the data set
- Address the following three research questions:
 - What driver characteristics are associated with increased SBP use?
 - 2) What work characteristics are associated with increased SBP use?
 - 3) What is the relationship between SBP use and safety-critical event occurrence?

Hours-of-Service and Shift Restart Methods

- Hours-of-Service (HOS) regulations set guidelines for commercial motor vehicle driver's maximum daily drive time, workday hours, and work week hours
- HOS includes required rest periods to take to start a new shift
- These rest periods include:
 - "10+ hours"
 - "34+ hours"
 - Sleeper-berth provision (SBP)

Advancing Transportation Through Innovation

Hours-of-Service and Shift Restart Methods

- Sleeper-berth provision (SBP)
 - Drivers must spend at least 8 (but less than 10) consecutive hours in the sleeper berth
 - Rest period does not count as part of the 14 hour work window for driving
 - Driver must take a second rest period of at least 2 (but less than 10) consecutive hours, which can be spend in sleeper berth, off duty, or a combination of the two
 - Rest period does count as part of the 14 hour work window for driving
 - After completing second rest period, your available hours are calculated at the time you completed the first required rest period

Sleeper Berth Provision

Task	Task Duration	14-Hour Window Time Remaining After Task	11-Hour Driving Time Remaining After Task
On duty (not driving)	2 h	14 – 2 = 12 h	11 – 0 = 11 h
Driving	5 h	12 – 5 = 7 h	11 – 5 = 6 h
Sleeper berth	8 h	7 h	6 h
Driving	6 h	7 – 6 = 1 h	6 – 6 = 0 h
Off duty break	2 h	14 - 6 - 2 = 6 h	11-6 = 5 h

Methods: The Data Set

 Driving video data and activity register data collected in the Naturalistic Truck Driving Study (Blanco et al.)

DATE: DRIVER:	
Mid- Night 1 2 3 4 5 6 7 8 9 1	10 11 Noon 1 2 3 4 5 6 7 8 9 10 11
Activity Codes	Medication/Caffeine Use:
Tasks During Driving Duty: 1 - Driving Truck 2 - Heavy Work (loading/unloading) 3 - Sleep 4 - Rest (not asleep) 5 - Eating 6 - Light Work (waiting, paperwork, vehicle maint.) Off-Duty Tasks: 7 - Sleep 8 - Rest (not asleep, watching TV, resting) 9 - Eating 10 - Light House Work (dishes)	Time Type Amount/Dosage
11 – Heavy House Work (mowing lawn) 12 – Light Leisure Activity (walking, Internet)	
13 – Heavy Leisure Activity (running, sports)	
14 – Driving Other Vehicle (not work-related)	

Methods: Hybrid Data Set

- The video data and speed information used to verify/update the time of driving marked in the activity register
- Baselines and SCEs, by definition, must occur during driving, so activity registers were adjusted to reflect that a baseline or SCE occurred only during driving and not during other activities
 - Blanco et al. (2011) adjusted the driving periods in the activity register to ensure all SCEs occurred during marked driving periods
 - The current study followed the same process for the previously selected baselines

Transportation Institute

Hybrid data set then used to identify shift-restart breaks

Shift-Restart Method	Ν	Average Drive Hours Preceding the Break	Average Work Hours Preceding the Break
10+ hour	1,227	7.57	10.84
34+ hour	253	7.56	10.98
SBP	183	8.11	12.05

Shift- Restart Method	SCE Count	SCE Percentage of Events	Baseline Count	Baseline Percentage of Events	Total Event Count
10+ hour	1,599	36%	2,831	64%	4,430
34+ hour	280	36%	504	64 %	784
SBP	222	29%	538	71%	760
				Trans	giniaTech. sportation Institute

- The relationship between SCE rate and shift-restart method was tested two ways
- Mixed-effect negative binomial model results:
 - No significant difference found in the SCE rates in shifts following a SBP break and the SCE rates in shifts following 10+ hour or 34+ hour restart breaks (t = -0.63, p = 0.5284)
- Odds ratio results:
 - 10+ hour restart and 34+ hour restart methods were found not to be significantly different [OR_{10+,34+} = 1.02, 95% CI = (0.87, 1.19)]
 - Both the 10+ hour restart and 34+ hour restart methods were associated with significantly higher risk than the SBP [OR_{10+,SBP} = 1.37, 95% CI = (1.16, 1.62); OR_{34+,SBP} = 1.35, 95% CI = (1.09, 1.67)]

Summary

- SBP appears to be used more frequently among drivers:
 - with less CMV driving experience
 - who did not report having arthritis or dizziness, vertigo, or another balance disorder
 - who did not report taking medications regularly
 - with longer drive and work hours
- SBP was associated with no higher—and, for some comparisons, even a lower—risk than the other shift-restart methods
- Future work & Limitations

Acknowledgements & Contact Information

Thank you to NSTSCE

Author Contact Information: Susan Soccolich Center for Truck and Bus Safety Virginia Tech Transportation Institute ssoccolich@vtti.vt.edu

Advancing Transportation Through Innovation

Resources

- Berman, J. (2006). Controversy continues over HOS sleeper-berth ruling. Logistics Management (2002), 45(3), 16.
- Darwent, D., Roach, G., & Dawson, D. (2012). How well do truck drivers sleep in cabin sleeper berths? Applied Ergonomics, 43, 442-446.
- Belenky, G., Jackson, M. L., Tompkins, L., Satterfield, B., & Bender, A. (2012). *Investigation of the effects of split sleep schedules on commercial vehicle driver safety and health. Report No. FMCSA-RRR-12-003.* Washington, DC: Federal Motor Carrier Safety Administration.
- Mackie, R. R., & Miller, J. C. (1978). Effects of hours of service, regularity of schedules, and cargo loading on truck and bus driver fatigue. Technical Report 1765-F NHTSA. Goleta, CA: Human Factors Research, Inc.
- Hertz, R. P. (1988). Tractor-trailer driver fatality: The role of nonconsecutive rest in a sleeper berth. *Accident Analysis & Prevention, 20*(6), 431-439.
- Blanco, M., Hickman, J. S., Olson, R. L., Bocanegra, J. L., Hanowski, R. J., Nakata, A., Greening, M., Madison, P., Holbrook, G. T., & Bowman, D. (in press). Investigating critical incidents, driver restart period, sleep quantity, and crash countermeasures in commercial vehicle operations using naturalistic data collection: Final report. Contract No. DTFH61-01-C-00049 (Task Order No. 23). Washington, DC: Federal Motor Carrier Safety Administration.
- Blanco, M., Hanowski, R. J., Olson, R. L., Morgan, J. F., Soccolich, S. A., Wu, S., & Feng, G. (2011). The impact of driving, non-driving work, and rest breaks on driving performance in commercial motor vehicles: Final report. Report No. FMCSA-RRR-11-017. Washington, DC: Federal Motor Carrier Safety Administration.
- Olson, R. L., Hanowski, R. J., Hickman, J. S., & Bocanegra, J. (2009). Driver distraction in commercial vehicle operations. Report No. FMCSA-RRR-09-042. Washington, DC: Federal Motor Carrier Safety Administration.
- Hanowski, R. J., Blanco, M., Nakata, A., Hickman, J.S., Schaudt, W.A., Fumero, M.C., Olson, R.L., Jermeland, J., Greening, M., Holbrook, G.T., Knipling, R.R., & Madison, P. (2008). *The drowsy driver warning system field operational test, data collection final report. Report No. DOT HS 810 035.* Washington, DC: National Highway Traffic Safety Administration, USDOT.
- Mosteller, F. (1968). Association and estimation in contingency tables. *Journal of the American Statistical Association, 63*(321), 1-28. Retrieved from http://www.jstor.org/stable/2283825
- Woolf, B. (1955). On estimating the relationship between blood group and disease. Annals of Human Genetics, 19(4), 251-253.
- Drewes, A. M., Svendsen, L., Taagholt, S., Bjerregård, K., Nielsen, K. D., & Hansen, B. (1998). Sleep in rheumatoid arthritis: A comparison with healthy subjects and studies of sleep/wake interactions. *Rheumatology*, *37*(1), 71-81. doi:10.1093/rheumatology/37.1.71
- Taylor-Gjevre, R. M., Gjevre, J. A., Nair, B., Skomro, R., & Lim, H. J. (2011). Components of sleep quality and sleep fragmentation in rheumatoid arthritis and osteoarthritis. *Musculoskeletal Care*, *9*(3), 152-159.
- Federal Motor Carrier Safety Administration. (2014). Federal Motor Carrier Safety Administration Medical Examiner Handbook. Washington, DC: Federal Motor Carrier Safety Administration. Retrieved from http://nrcme.fmcsa.dot.gov/documents/FMCSAMedicalExaminerHandbook-2014MAR18.pdf
 Advancing Transportation Through Innovation