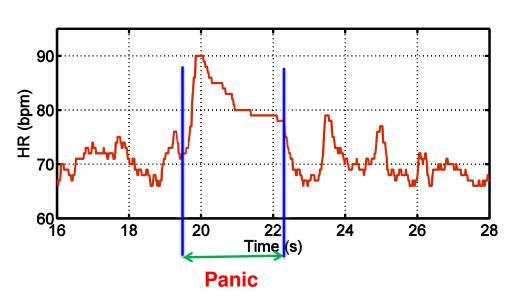


Assessment of Psychophysiological Characteristics of Drivers Using Heart Rate from SHRP2 Face Video Data

ABHIJIT SARKAR ZACHARY DOERZAPH A. LYNN ABBOTT

Background and motivation


- Drivers' performance and behavior in traffic safety
- SHRP2 naturalistic data
 - Potentiality of video data
 - No direct measurement of physiological variables
 - o Blood pressure, heart rate, respiration rate
- Limited work with non intrusive heart rate measurement using naturalistic data

Background and motivation

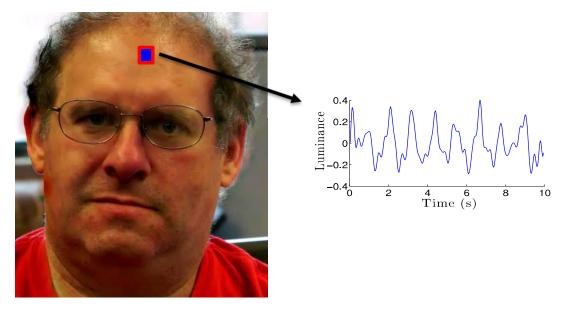
- The goal is to
 - Extract heart rate from face video
 - Understand the behavior of driver, e.g. cognitive load, panic attack, drowsiness, DUI.
 - Develop automatic video reduction technique
 - Device a tool for future

Heart Rate - What It Reflects

Average heart rate

What is Video Magnification

 Blood volume pulses are imperceptible to normal vision



Wu et al. SIGGRAPH 2012

What is Video Magnification

 Video magnification helps to visualize pulse rate

Wu et al. SIGGRAPH 2012

9/10/2014

Video Magnification(VidMag)

Application

- Fast algorithm
- Provides average heart rate in restricted condition

o Task

- Test VidMag in naturalistic condition to extract heart rate
- Find relation between heart rate and psychophysiological behavior of driver

Challenges

- Constraint from video
 - No color information
 - Low frame rate 10 to 15 fps
- Naturalistic constraints
 - Natural head movement
 - Effect of ambient Illumination and reflections


Test with Grayscale Video

RGB video

Gray scale video

9/10/2014

Low Frame Rate

- Nyquist criteria
 - HR ranges from 0.6 to 4 Hz
- Post processing of pulse signals during peak detection
 - Resample to increase HR resolution
 - Smoothing helps eliminate false peak

Natural Head Movement

- More than 80% of the time drivers look forward
- Goal: Automatic selection of video sequence with minimum face movement
 - tracking facial landmark

Below threshold sequence

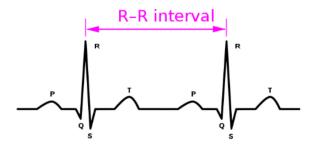
Above threshold sequence Xiong et al. CVPR 2013

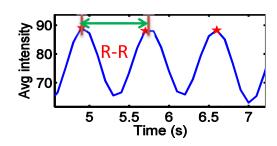
Validation

- o Garmin Forerunner 620 with HR monitor
 - Records heart rate every second
 - Synchronized with MiniDAS GPS time
 - Non-intrusive to naturalistic driving

Wrist wearable data recorder

Chest wearable HR sensor


Image : http://www.garmin.com/en-AU


9/10/2014

Heart Rate Variability (HRV)

HRV is the variation of RR intervals in ECG signal

- Reflects the behavior of the sympathetic and parasympathetic nervous system
- Indicates condition of a driver
 - Drowsiness, panic, cognitive load, mental state.
- Open source software available

On going efforts

Change in illumination

- Inconsistency in different part of the face
- Automatic skin detection
- Validate behavior of interests

Conclusion

- Promises shown
 - Low processing time
 - Matlab platform
 - Face video can indicate instantaneous heart rate with good accuracy
 - This method is nonintrusive to driver performance
 - HRV is a good indicator of the psychophysiological condition of the driver
 - Effective tool on top of kinematic variables

Conclusion

Challenges

- Night vision is more challenging, difficult to find faces
- SNR during night is very low
- Shadows and change in illumination
- Sensitive to small movement of face

Questions

Thank you

Acknowledgements

- John Hankey
- Review team NDRS
- Virginia-Maryland Regional College of Veterinary Medicine
- Surface Transport Safety Center for Excellence (STSCE)
- Participants

Reference

- [1 N. H. T. S. Administration, "Traffic safety facts, crash stats: Drowsy driving," **DOT HS**, vol. 811, p. 449, 2011.
- [2] U. R. Acharya, K. P. Joseph, N. Kannathal, C. M. Lim, and J. S. Suri, "Heart rate variability: a review," **Medical and Biological Engineering and Computing**, vol. 44, pp. 1031-1051, 2006.
- [3] J. A. Healey and R. W. Picard, "Detecting stress during real-world driving tasks using physiological sensors," **Intelligent Transportation Systems**, IEEE Transactions on, vol. 6, pp. 156-166, 2005.
- [3] N. Rodriguez-Ibañez, M. A. García-Gonzalez, M. A. F. de la Cruz, M. Fernández-Chimeno, and J. Ramos-Castro, "Changes in heart rate variability indexes due to drowsiness in professional drivers measured in a real environment," in **Computing in Cardiology (CnC)**, pp. 913-916, 2012.
- [4] M.-Z. Poh, D. J. McDuff, and R. W. Picard, "Advancements in noncontact, multiparameter physiological measurements using a webcam," **Biomedical Engineering**, IEEE Transactions on, vol. 58, pp. 7-11, 2011.
- [5] H.-Y. Wu, "Eulerian video processing and medical applications," Master's Thesis, Massachusetts Institute of Technology, 2012.
- [6] X. Zhu and D. Ramanan, "Face detection, pose estimation, and landmark localization in the wild," in Computer Vision and Pattern Pecognition (CVPR), IEEE Conference on, pp. 2879-2886, 2012.

Thank you