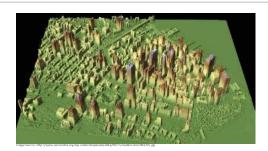
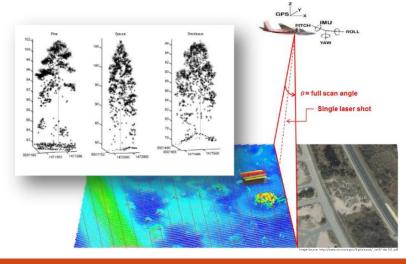


Problems Assessing Visibility

- How can we assess visibility in situations where the roadway infrastructure occludes a driver's view?
 - At intersections/around corners
 - Around horizontal curves
 - Over vertical curves
- Previous methods have included:
 - Video reduction
 - Road surveys


LiDAR — What?

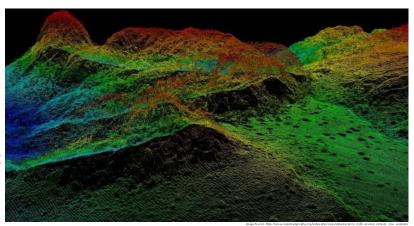

➤ What is LiDAR?

- Light Detection and Ranging
- A remote sensing method used to examine the surface of the earth

➤ How is it collected?

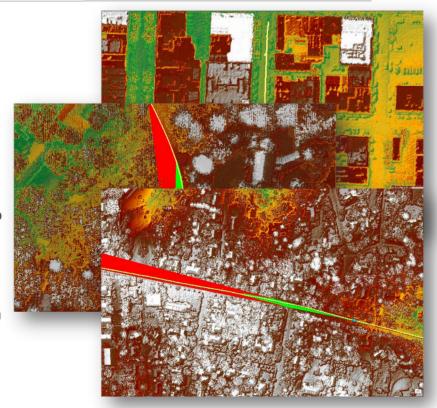
- Often by air
- Uses a pulsed laser to measure ranges to the surface of the earth
- Captures:
 - "Top" of vegetation, builtenvironment
 - Surface of the earth
 - Multiple pulses which penetrate through vegetation
- Point-clouds

Challenges...


- Requires expert knowledge and specialized software
- ➤ Not available in all areas
- ➤ Can be difficult and costly to obtain
- Requires ability to handle extremely large datasets

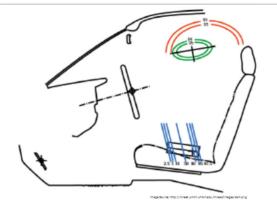
LiDAR — How?

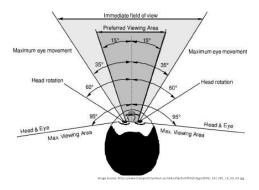
➤ How can we use it?


- Create:
 - Digital Elevation Models (DEMs)
 - Bare-earth model
 - Digital Surface Models (DSMs)
 - Vegetation and built-environment
- Collect:
 - Naturalistic or other driving data including GPS locations
- Derive:
 - Driver eye-heights from vehicles used
 - Vehicle representations along path

LiDAR — How?

➤ How can we use it?


- Analyze:
 - Visibility at intersections
 - Visibility around horizontal curves
 - Visibility over vertical curves
 - ...and more
- Decide:
 - Use results from these analyses to make decisions about:
 - Roadway design
 - Vehicle design
 - How emerging technologies can overcome visibility issues
 - Etc.

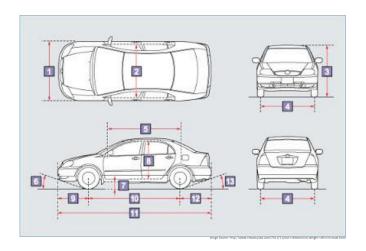


Measuring Visibility

- ➤ Driver eye height
 - Centroid of driver eye positions from ground (Sivak, et. al., 1996):
 - Cars: 1.11 meters
 - Light Trucks/Vans: 1.42 meters
- ➤ Driver Field of Vision:
 - ~180° (Lockhart, et. al., 2009)

Measuring Visibility

Vehicle width

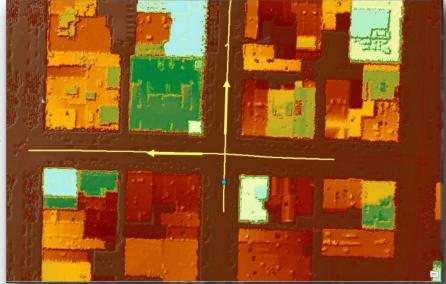

Average widths (Edmunds.com, 2007):

Sedan Compact: 1.75 meters
Sedan Midsize: 1.81 meters
Sedan Large: 1.91 meters
SUV Compact: 1.80 meters
SUV Midsize: 1.87 meters
SUV Large: 1.99 meters

Vehicle height

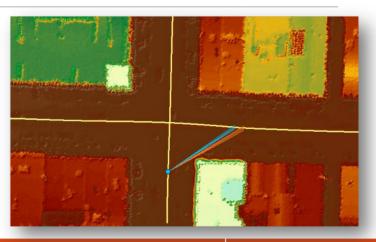
• Average heights (Edmunds.com, 2007):

Sedan Compact: 1.46 meters
Sedan Midsize: 1.46 meters
Sedan Large: 1.49 meters
SUV Compact: 1.73 meters
SUV Midsize: 1.77 meters
SUV Large: 1.91 meters



Urban Intersection Visibility

- Assess visibility from a stop bar of cross-traffic in an urban environment including multiple-story buildings and some vegetation.
- ➤ Methods for analysis:
 - Create vehicle paths
 - Model vehicle and driver eyeheight
 - Model Topography

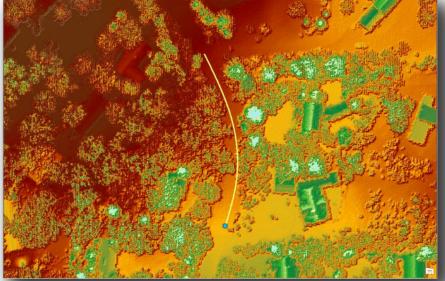


Urban Intersection Visibility

- ➤ Analyze visibility
 - Visibility along sight lines
 - Identify first partial-car visible from driver's POV (orange)
 - Identify first full-car visible from driver's POV (blue)
 - Calculate distances

Further Analysis:

- Time to Intersection (TTI)
 - Roadway is 25mph


Distanceto	LOS
First Visible Partial-Car	26 meters
First Visible Full-Car	24 meters
™to	Along Path
TTI to First Visible Partial-Car	Along Path 2 seconds

Horizontal Curve Visibility

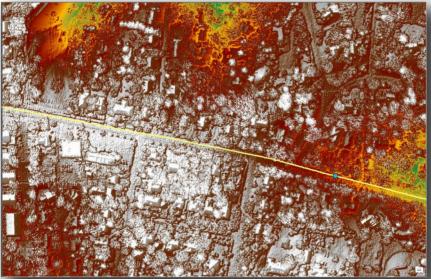
- Assess visibility within a curve in a rural environment including heavy vegetation and some buildings.
- ➤ Methods for analysis:
 - Create vehicle paths
 - Model vehicle and driver eyeheight
 - Model Topography

8/26/2014

Horizontal Curve Visibility

- ➤ Analyze visibility
 - Visibility along sight lines
 - Identify first partial-car visible from driver's POV (orange)
 - Identify first full-car visible from driver's POV (blue)
 - Calculate distances

- Time to Collision (TTC)
 - Roadway is 25mph


Distanceto	LOS
Last Visible Full-Car	58 meters
Last Visible Partial-Car	62 meters
TTC+o	AL DU
TTCto	Along Path
Last Visible Full-Car	5.2 seconds

Vertical Curve Visibility

- Assess visibility within a curve in a rural environment including heavy vegetation and some buildings.
- ➤ Methods for analysis:
 - Create vehicle paths
 - Model vehicle and driver eyeheight
 - Model Topography

Vertical Curve Visibility

- ➤ Analyze visibility
 - Visibility along sight lines
 - Identify first partial-car visible from driver's POV (orange)
 - Identify first full-car visible from driver's POV (blue)
 - Calculate distances

- Time to Collision (TTC)
 - Roadway is 25mph

Distance to	LOS
Last Visible Full-Car	166 meters
Last Visible Partial-Car	184 meters
TTCto	Along Path
TTCto Last Visible Full-Car	Along Path 15 seconds

Conclusions

- LiDAR is a valuable tool for evaluating line of sight
- Though setup is time-intensive, able to be used as an automated process
- ➤ More objective and efficient than video reduction or survey methods
- ➤ Topic areas:
 - Roadway design
 - Vehicle design
 - How emerging technologies can overcome visibility issues
 - V2V
 - Autonomous
 - Etc.

Questions?

Leslie C. Harwood
Project Associate
Center for Advanced Automotive
Research, VTTI
lharwood@vtti.vt.edu

Dr. Zachary R. Doerzaph
Director
Center for Advanced Automotive
Research, VTTI
zdoerzaph@vtti.vt.edu

