Crash Trifecta: A Complex Driving Scenario for Describing Safety-Critical Event Causation

Naomi Dunn, Jeffrey Hickman, & Rich Hanowski Center for Truck グ Bus Safety Virginia Tech Transportation Institute

Overview

- Investigating crash causation:
 - Crash databases compiled from police accident reports and naturalistic driving (ND) studies
 - Emphasize the critical reason as primary proximal cause
 - Do not allow room for specification of any factor other than the critical reason
- In reality, there is often more than one factor that contributes to the formation of a safety-critical event (SCE)
 - Involves a convergence of several factors
 - E.g., distracted driving + sudden stop in traffic

Crash Trifecta Concept

- Defined as three separate, but converging, elements:
 - 1. Unsafe pre-incident behavior or maneuver
 - 2. Transient driver inattention
 - 3. An unexpected traffic event
- Each of these elements can (and does) occur individually and can result in an SCE
 - All 3 elements do not need to be present for a crash to occur
- The crash trifecta concept implies that the probability of a crash is greater if the three elements are present than if only one is present
 - i.e., higher severity SCEs are more likely to involve the convergence of multiple elements and lower-severity SCEs may be attributed to a unitary element

Transportation Institute

Example

Unsafe pre-incident behavior (e.g., tailgating)

Transient driver inattention (e.g., texting)

Unexpected traffic event (e.g., sudden braking due to animal on the road)

Outcome = CRASH

Objective

 Investigate the crash trifecta concept to determine if the convergence of multiple elements, rather than a single, unitary critical reason, has greater value in explaining the complexities of crash genesis

Methods

- Secondary analysis using seven existing naturalistic driving data sets
 - 4 truck-based ND studies
 - 3 light-vehicle ND studies
- Data were formatted and merged into one data set
- SCEs included:
 - Crash
 - Curb Strike
 - Near-Crash
 - Crash-Relevant Conflict

Methods – Data Reduction

Previous data reduction provided driver behavior variable

- Used to determine unsafe driver behavior
- E.g., speeding; aggressive driving; improper turning; stop sign or signal violation; drowsy, inattentive, or distracted driving; excessive or sudden braking/stopping; following too close; illegal passing

Eye-glance data had also been reduced and coded

- Used to assess transient driver inattention
- Threshold of > 1 sec
- If a driver's eyes were off the forward roadway for a total of more than 1 second prior to the triggering event, transient driver inattention was deemed to be present

Methods – Data Reduction

- New data reduction was needed to obtain the unexpected event variable
- Data analysts examined 10 seconds prior to SCE to determine if an unexpected event occurred
 - E.g., an animal, object, or debris on the road; another vehicle pulling out in front of the subject vehicle; lead vehicle braking suddenly; another vehicle cutting in front of subject vehicle; changes in traffic occurring while the subject was not paying attention
- Inter-rater reliability estimates verified that analysts followed data reduction protocols in the same way (~ 93 % agreement)

Results – Crash Trifecta Event Classification

Severity Level	Number of Crash Trifecta Events (n = 4,471)	Number of At-Fault Crash Trifecta Events (<i>n</i> = 3,038)
Crash	138	94
Near-Crash	1,202	733
Crash-Relevant Conflict	3,060	2,150
Curb Strike	71	61

Crash Trifecta Elements by SCE Severity

Crash Trifecta Elements	Crash (<i>n</i> = 138)	Near-Crash (<i>n</i> = 1,202)	Crash- Relevant Conflicts (<i>n</i> = 3,060)	Curb Strikes (<i>n</i> = 71)	Total (<i>n</i> = 4,471)
None	4.35%	2.16%	3.27%	4.23%	3.02%
Unexpected Traffic Event	6.52%	9.07%	11.80%	0.00%	10.72%
Transient Inattention	9.42%	1.75%	2.19%	2.82%	2.30%
Unsafe Driving Behavior	9.42%	8.48%	19.97%	26.76%	16.66%
Unexpected Event + Transient Inattention	3.62%	3.08%	3.50%	0.00%	3.33%
Unexpected Event + Unsafe Behavior	18.12%	41.93%	15.19%	0.00%	22.23%
Unsafe Behavior + Transient Inattention	23.91%	9.40%	33.49%	61.96%	27.18%
Crash Trifecta	24.64%	24.13%	10.59%	4.23%	14.56%
Total	100.00%	100.00%	100.00%	100.00%	100.00%

Crash Trifecta Elements by At-Fault SCE Severity

Crash Trifecta Elements	Crash (<i>n</i> = 94)	Near-Crash $(n = 733)$	Crash- Relevant Conflict (n = 2,150)	Curb Strike (<i>n</i> = 61)	Total (<i>n</i> = 3,038)
None	2.13%	2.32%	1.07%	4.92%	1.48%
Unexpected Traffic Event	3.19%	3.55%	1.26%	0.00%	1.84%
Transient Inattention	3.19%	1.91%	1.26%	3.28%	1.51%
Unsafe Driving Behavior	10.64%	11.59%	25.21%	29.51%	21.56%
Unexpected Event + Transient Inattention	1.06%	1.50%	0.70%	0.00%	0.89%
Unexpected Event + Unsafe Behavior	15.97%	37.24%	15.25%	0.00%	20.28%
Unsafe Behavior + Transient Inattention	31.91%	13.92%	44.46%	59.02%	37.00%
Crash Trifecta	31.91%	27.97%	10.79%	3.27%	15.44%
Total	100.00%	100.00%	100.00%	100.00%	100.00%

Discussion

- Pattern of results seems to make intuitive sense
 - E.g., inattention present in ~70% of crashes but only 45% of nearcrashes
- Approx. two-thirds of all SCEs and three-quarters of at-fault SCEs had at least two crash trifecta elements present
 - less than one-third of the total SCEs and one-quarter of at-fault SCEs had one crash trifecta element present
 - equivalent to a single critical reason
- Most notably, the presence of all three crash trifecta elements increased as the severity of the SCE increased
 - E.g., 32% of at-fault crashes vs. 11% of at-fault crash-relevant conflicts

Conclusions

Assigning a critical reason may be suitable for lower-severity SCEs, but when investigating higher-severity SCEs, the convergence of multiple elements needs to be recognized

- The crash trifecta concept may also assist researchers in determining why a crash occurred compared with a similar situation that resulted in a successful evasive maneuver
- There were few crashes and curb strikes compared to nearcrashes and crash-relevant conflicts
 - More data is needed to confirm these results

Thanks for listening!

Naomi Dunn, Ph.D. ndunn@vtti.vt.edu

Final report available on VTechWorks http://hdl.handle.net/10919/49685

