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Scientific Questions

How does risky driving behavior measured by g-force events
vary by condition and over time?

Do composite g-force events change over time?
Do trip-specific covariates (e.g. adult passengers, night
driving, etc.) effect g-force events?
What are the sources of variation in g-force events?
What is the serial dependence in g-force events?

How do g-force events relate to teenage accidents?

Can we predict actual or near crashes from g-force events?
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Outline

Exploring features of the data

Random process and marginal modeling of LONGitudinal
counts:

A hierarchical Poisson regression modeling approach (Kim,
Chen, Zhang, Simons-Morton, Albert, 2013 JASA )
Marginal analysis of longitudinal counts data in long
sequences (Zhang, Albert, Simons-Morton, 2012 AOAS)

Joint models of kinematic measurements and crashes for
prediction

Ordinal latent variable models and their application in the
study of newly licensed teenage drivers (Jackson, Albert,
Zhang, Simons-Morton, 2013 JRSS-C)
A two-state mixed hidden Markov model for risky teenage
driving behavior (Jackson, Albert, Zhang, In press at
AOAS).

Discussion
interesting problems?
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Exploring the Data
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Exploring the Data (Continued)
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Exploring the Data (Continued)
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Lowess smoothed empirical variograms for the composite kinematic events based on
10 random pairings with each observation in the dataset randomly paired with another

on the same individual.
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A Hierarchical Model

We assume the hierarchical Poisson regression models as
follow:

yij ∼ Poisson
{

mij exp
(

g(tij) + x ′
ijβ + τi + γij + εij

)}

where

g(tij) is a polynomial regression spline of order p with k knots.

τi ∼ N(0, σ∗2
τ ): a random effect for subject

γij ∼ N(0, σ∗2
γ ): a random effect for overdispersion

εij ∼ N
(
0, σ∗2

η

(
1 − ρ2dij

))
with ρ = exp(−θ) and dij = |tij − ti,j−1|: a

random effect with serial correlation among trips
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Posterior Estimates Under the Full Model
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Estimated Log-longitudinal Trajectory
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Serial Correlation (Model Based)
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The Association of G-force Events with Crashes

Kinematic measures and their correlation with C/NCs
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Risk Prediction

 
 
 
 
 
 
 
 
 
 
 
 

GEE With Logistic Regression  
Prediction of C/NC by Period 
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Simons-Morton et al., American Journal of Epidemiology, 2012 
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Joint Model for C/NC and Kinematics: A 
Hidden Markov Modeling Approach 

Latent Markov chain: 
δ 

Kinematic composite 
events: Poisson with 

mean h(δ) 

C/NC: Poisson with 
mean g(δ) 
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Hidden Markov Model:Prediction
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Hidden Markov Model:Prediction
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Summary

Exciting opportunities for collaborative work with research
statistical scientists

Understanding variation in kinematic measurements

Developing dynamic predictors of crashes

Future research

Identify subgroups of teenagers that are at extreme risk:
Tree-based approaches

Understanding effect of a C/NC on subsequent kinematic
dynamics: Recurrent events

Cost-effective and efficient designs for large scale studies
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