Pavement Preservation: Integrating Pavement Preservation Practices and Pavement Management

NHI Course 131104

National Highway Institute

Federal Highway Administration

Related NHI Courses

- 131054: The Preventive Maintenance Concept
- 131058: Selecting Pavements for Preventive Maintenance
- 131103: Design and Construction of Quality Preventive Maintenance Treatments

Importance of Integration

- Each \$1 in preventive maintenance saved \$4 to \$10 in the rehabilitation program
- Substantial improvement in condition and ride quality realized
- Pavement management was crucial to the development of cost-effective preventive maintenance programs

Course Guidelines

- Participation is essential
- Speak loudly so all participants can hear
- One person speaks at a time
- Return from breaks promptly
- Turn cell phones and pagers to vibrate mode

Course Materials

Participant's WorkbookReference Manual

Course Content

- Executive Summary
- Module 1: Course Introduction
- Module 2: Importance of Integration
- Module 3: Project-Level Performance Issues
- Module 4: Network Modeling and Analysis Tools

Course Content (cont.)

- Module 5: Incorporating Pavement Preservation into Strategic Decisions
- Module 6: Implementation Concepts
- Module 7: Summary and Wrap-Up
- Workshops

Before Getting Started...

- Are there questions on logistics?
- Are there questions about the course materials?
- Are there other questions that need to be addressed before moving on to the technical material?

Importance of Integration

Module 2

Key Concepts

Pavement Preservation
Preventive Maintenance
Pavement Management
Pavement Management System

Integration

Importance of Preventive Maintenance

Cost-Effectiveness of Preventive Maintenance

Pavement Management Components

Decision Levels

Decision Levels

- At what level is network condition information collected?
- **#** At what level are funding levels established?
- **#** At what level are candidate projects established?
- **#** At what level are projects designed?
- Which level typically uses the most detailed information?

Use of Pavement Management to Support Preventive Maintenance

- Demonstrate the benefits associated with preventive maintenance
- Estimate funding needs to achieve specific targets or goals
- Allocate available funding cost-effectivelyIdentify and prioritize treatment needs

North Carolina Department of Transportation Simulation

- **■** 1000-mile network
- Distribution of network conditions based on actual conditions
- **■** Evaluated a "worst first" strategy
 - 50 miles of roads in poor condition resurfaced
- **#** Evaluated a "pavement preservation" strategy
 - 100 miles of roads in fair condition addressed first before roads in poor condition

Simulation Results

Pavement Condition Rating Year Worst First Pavement Preservation

Average Pavement Condition over Time

New York State Department of Transportation Example

Impact of Pavement Preservation Program on Safety - NY

	Fatality Rate Per 100 Million VMT	Fatality Rate Per 100 Million VMT		
	New York	U.S. Average		
1990	2.07	2.07		
2000	1.13	1.52		

Kansas Department of Transportation

Integration Requirements

- Method of identifying preventive maintenance needs
- Models that reflect future pavement performance with and without preventive maintenance treatments
- Prioritization process that considers preventive maintenance
- Analysis period long enough to display the impact of preventive maintenance

Integration Gaps

- Not tracking maintenance histories and performance
- Not collecting data to support preventive maintenance treatment selection and timing
- **#** Maintaining independent databases
- **H** Others?

Why Address Integration Issues?

- Develop a more coordinated work plan to accomplish agency goals
- Better demonstrate the benefits in using preventive maintenance treatments
- Keep the decisions at the appropriate level within the agency
- Make better informed decisions about treatment needs

Project-Level Performance Issues

Module 3

Level of Detail Comparisons

Network Diagnostic Surveys

- High-speed road monitoring
- Rutting, distress, roughness, skid, video record

Structural Evaluation

- Deflection testing
- Pavement thickness
- Traffic projections

NHI Course 131104: Pavement Preservation - 4

Project-Level Evaluation

- Detailed visual inspection
- Maintenance records
- Traffic flow
- Accident records

Questions to be Addressed

- Is it structurally adequate?
 Is it functionally adequate?
 Is the rate of deterioration normal?
 Are the materials durable?
 Is drainage adequate?
 Has previous maintenance been normal?
- What geometric factors are important?

Impact of Preventive Maintenance Treatments on Pavement Performance

Impact on Cracking - Arizona

Impact on Roughness (Joints Repaired) - Pennsylvania

Impact on Roughness (Joints Not Repaired) - Pennsylvania

Texas SPS-3 Test Sections

ID	Highway	Date Constructed	Date of Survey	KESAL per year	Thin Overlay	Slurry Seal
48D3	IH20	9/90	7/95	530	85.6	84.6
48M3	US59	10/90	3/97	40	91.1	93
Effect of Traffic – Texas

Reductions in IRI Rate of Change Due to Maintenance Expenditures

Increase in Expenditure Level (\$/lane mile/year)	Patching and Joint and Crack Sealing	
	North	South
\$50 to \$100	0.29	0.19
\$100 to \$150	0.17	0.11
\$150 to \$200	0.12	0.06
\$200 to \$250	0.10	0.05
\$250 to \$300	0.07	0.04

NHI Course 131104: Pavement Preservation - 4

The Impact of Treatment Timing on Pavement Performance

Suggested Optimal Timing

Fog seals, 1 to 3 years
Crack seals, 2 to 4 years
Chip seals, 5 to 7 years
Slurry seals, 5 to 7 years
Thin overlays, 5 to 10 years

Effect of Proper Timing

Effect of Improper Timing

Average Equivalent Uniform Annual Cost (EUAC) Ratios for PCI Ranges


```
NHI Course 131104: Pavement Preservation - 4
```

Strategies to Assist With Timing

Earlier thresholds

Quick delivery contracts

- Montana
- Caltrans
- Michigan
- Georgia
- New York

Links to the Network-Level

Guidelines for using treatments Preventive maintenance manual Compatible data collection efforts Frequency and timing of surveys

- Availability of desired information
- Accuracy of survey data

Network Modeling and Analysis Tools

Module 4

Approaches to Integration –1

- Establish treatment rules for rehabilitation and reconstruction
- Pavement sections that are NOT candidates for rehabilitation or reconstruction are candidates for maintenance

OR

Rehabilitation and Reconstruction Preventive Maintenance Candidate

Approaches to Integration - 2

Preventive maintenance treatments are considered collectively as a treatment and the specific treatment is not identified

Treatments Considered

Preventive Maintenance Thin Overlay Mill and Fill Structural Overlay NHI Course 131104: Pavement Preservation - 4 Reconstruction

Example

Ohio Department of Transportation

Treatment Rules Based on Timing

- Rehabilitation and reconstruction activities are triggered based on condition information
- Preventive maintenance treatments are triggered based on time since last activity

Approaches to Integration – 3

Specific preventive maintenance treatments are recommended based on information available in the pavement management system

Improvements in Condition

Change distress severity Medium and high severity cracks go to Low severity after crack sealing Corresponding changes to indexes are Calculated and used to establish rules

Change in Rate of Deterioration

Pros and Cons to Approach 3

- Allows an agency to incorporate treatment selection with project identification
- Models can be more specific to the treatment
- Requires more supporting information in the pavement management system

Condition Surveys and Condition Index Calculations

- Types of distress surveyed
 Use of individual versus composite
 - indices
- Frequency of surveys
- Others?

Pavement Performance Models

- Ability to develop distinct curves for each treatment and condition index
- Availability of necessary information in the database

Family Modeling Approach

Preventive Maintenance Treatment Performance

Treatment Rules

- Treatment Feasibility Rules
 Decision trees
 Treatment cycles
 Treatment Reset Rules
- Construction Cost Rules

Minnesota Decision Tree – Part 1

Minnesota Decision Tree – Part 2

severity of transverse cracks

Decision Tree for Cracking

Checking Treatment Triggers

Block Cracking

Impact of Maintenance on IRI

Activity	Mean Change in IRI	Adjusted Mean Change in IRI
Joint and crack filling	-0.294	-0.432
Joint and crack sealing	-0.225	-0.340
Full depth patching	-0.515	-0.570
Microsurfacing	-0.292	-0.324

NHI Course 131104: Pavement Preservation - 4

Impact of Maintenance on a Condition Index

Description	Mean Observed Change in PCI	Mean Change in PCI After Correction
Full-depth patching ACC/PCC	1.08	3.50
ACC partial-depth patching	1.00	5.72
Microsurfacing	2.10	4.76
Pavement fog seal	1.00	6.47

Ogden City, Utah

Indiana Department of Transportation - Interstates

MDOT - Reconstruction Only

MDOT - Reconstruction and Rehabilitation

MDOT - With Preventive Maintenance

Incorporating Pavement Preservation into Strategic Decisions

Module 5

Strategic-Level Issues

- The establishment of performance criteria for various road classifications
- The distribution of funding levels by district, including both targeted and actual funding levels
- The evaluation of trade-offs between the expansion of the network versus preservation of existing systems

NHI Course 131104: Pavement Preservation - 4

Legislative Involvement

- Pennsylvania DOT: "...Governor now has a maintenance-first philosophy, and he is putting his money where his mouth is"
- North Carolina DOT: Requires reporting of conditions and costs
- California DOT: Reduce backlog from 14,300 lane miles to 5,500 lane miles

- Establishing Goals and Budgets
- Indicate the objective for the program in terms of what will be achieved and when it will be accomplished
- Example: Michigan set a 10-year goal for 95% of its expressways and 85% of its non-expressways to be in fair or good condition
- Monitor the progress towards the goal

NCDOT Maintenance Performance Measures - Primary

ELEMENT 1			Service Level					
	Roadway Pavement		Α	B	С	D	F	Acceptable
		Performance						Level of Service
Activities	Condition Indicators	Measures	Threshold	Threshold	Threshold	Threshold	Threshold	
Pavement Maintenance	Pavement Condition Rating	PCR	9 8	93	86	70	< 70	С

ELEMENT 2			Service Level					
Unpaved Shoulders and Ditches			Α	В	С	D	F	Acceptable
Activities	Condition Indicators	Performance Measures	Threshold	Threshold	Threshold	Threshold	Threshold	Level of Service
LowShoulder	Low _{>} 2inches	FT	1%	5%	8%	11%	>11%	С
High Shoulder	High _{>} 2inch	FT	1%	4%	6%	10%	>10%	С
Lateral Ditches	Blocked \geq 50% & not funct. as designed	FT	2%	6%	9%	12%	>12%	С
Lateral Ditch Erosion	$Ercoded_{\geq}1$ ft	FT	1%	2%	3%	4%	> 4%	А

Statewide Average - Primary System

	Level of Service							
Maintenance Activity	+ * -	- a	+ C -	+ D -	÷ :			
Pavement								
Pavement								
Unpaved Shoulders and Ditches								
Low Shoulder				(
High Shoulder								
Lateral Ditches			6					
Lateral Ditch Erosion								
Drainage								
Crossline Pipe								
Driveway Pipe	1							
Curb & Gutter				1				
Catch Basin & Drop Inlet								
Other Drainage Features								
Roadside								
Mowing								
Brush & Tree Control			· · · · · · · · · · · · · · · · · · ·					
Litter & Debris								
Slope				1				
Guardrail								
Traffic Control Devices				-				
Traffic Signs								
Pavement Striping								
Words & Symbols				1				
Pavement Markers								
Environmental								
Turf Condition								
Misc. Vegetation Management								

Minnesota DOT

- Set a funding goal of \$40 million based on information provided by the pavement management system
- Established procedures for distributing money to the districts and assisting the districts with project and treatment selection

Transportation Asset Management

- Defined as a strategic approach to allocating resources for the preservation, operation, and management of our Nation's transportation infrastructure
 - FHWA emphasis on the use of asset management concepts for system preservation activities

NY State Transportation Commissioner

"The citizens and taxpayers that use our transportation system expect excellence, integrity, reliability, and sustainability to be reflected in the decisions public officials implement on their behalf. ...More use of technical tools to quantify the economic efficiency of proposed investment alternatives will help transportation executives meet these expectations."

Implementation Concepts

Module 6

Implementation Issues

- Technical issues
- Institutional issues
- Organizational issues

Inability to Track Maintenance

Multiple Referencing Systems

Guidelines for Selecting a Common Reference System

- Pick a system that is attribute and application neutral
- Get help and do it quickly
- Leverage other efforts

Lack of Support for Early Intervention

- Shorten the time between project identification and construction
- Public perception issues

Delaware County, Ohio

NHI Course 131104 – Pavement Preservation 4

PennDOT Press Release

"...we continuously strive to be as costeffective as possible with every dollar we have available. ... we will continue to explore new technologies that will help us do a better job for our customer. By preserving roads with the right type of treatment at the right time we can keep costs down and provide the biggest benefit possible to our customers."

Lack of Performance Data

- Treatment histories
- Treatment objective
 - Preventive
 - Stop-gap
- Treatment cost
- Do-nothing performance curves

Observations on Pavement Management Databases

- A pavement management analysis limits the amount of data stored
- Subsurface pavement thickness and material information is often missing
- Traffic load data is missing
- Other useful information is missing

Lack of Integrated Databases

- Multiple sources of data within an agency
- Data integration
 - Data warehousing
 - Linking databases

Duplication of Effort

- Improve efficiency and consistency
- Example: Level of Service (LOS) and pavement condition surveys

Understanding the Pavement Management System

- Understand the decision process
- Understand the impact maintenance activities have on treatment selection
- Be sure decisions are being made at the appropriate level

Organizational Structure Issues

Developing an Action Plan

- Benchmark existing practices
- Identify steps needed to be taken
- Prioritize the steps
- Prepare the action plan

Benchmarking Practices

	Strongl Disagre	y ee		Strong Agree	lly
A1: Agency pavement preservation policies are supported through the use of pavement management activities	1	2	3	4	
A2: The agency's capital maintenance funding allocations for roads are based on an assessment of pavement needs	1	2	3	4	

Identify and Prioritize Actions

- Where do gaps exist between good practice and agency practice?
- What steps can the agency take to reduce the gaps?
- Which issues are organizational issues and which are local issues?
- Which actions will have the greatest immediate benefit to the agency?

Guidelines

- Start small and build gradually
- Involve as many stakeholders as possible
- Recognize change doesn't happen immediately
- Promote the plan and build acceptance
- Document and promote progress

Success Stories: Organizational Structure

- NCDOT: Pavement Preservation Engineer
- Pavement Management Engineers in districts (Utah, Virginia)

Success Stories: Contracting Issues

- SDDOT: First chip application
- MDOT: Reduced design and developed warranties
Success Stories: Technical Issues

- Iowa DOT: Effects of preventive maintenance
- MnDOT: Network-level decision trees and review of preventive treatment selection
- MDOT: Single referencing system
- Integrating maintenance management and pavement management systems
- Data warehousing
- Manuals of Practice

Long-Term Research

- Performance studies
- Technology transfer/sharing results
- Data integration issues

Maintaining an Integrated Approach

- Develop a feedback loop
- Link Manuals of Practice to pavement management treatment selection
- Develop a steering committee
- Diagram relationships between sources of data and users
- Other ideas?

Summary and Wrap-Up

Module 7

Future Efforts

- FHWA's Expert Task Group (ETG)
- National Center for Pavement Preservation
- Regional/State Preservation Groups
- AASHTO Subcommittee on Maintenance Pavement Task Force
- Outreach Efforts

NHI Course 131104: Pavement Preservation 4

- Foundation for Pavement Preservation (FP²)
- Others

Key Points

- Importance of preventive maintenance
- Role of pavement management in supporting a preventive maintenance program at the project, network, and strategic levels
- Integration is a key to developing coordinated pavement preservation plans