

Large High-Resolution Display for Terrain Visualization RPUG 2010

Haeyong Chung Computer Science Vehicle Terrain Performance Lab

Large High-Resolution Display for Terrain Visualization RPUG 2010

John B. Ferris
Associate Professor of Mechanical Engineering
Director, VTPL
Virginia Tech

Outline

WirginiaTech

Background on VTPL

Motivation for LHRD

Scope

WirginiaTech

Vehicles

- Passenger cars and trucks
- Commercial off-road and military vehicles
- Motorcycles
- Race cars
- Chassis components
 - □ Tires
 - □ Springs, dampers, bushings,...

Scope

WirginiaTech

Terrain

- Highway and public roads
- Race tracks
- Off-road
- Proving Ground

Performance

- Ride
- Handling
- Mobility
- Durability
- Reliability

Terrain Measurement

WirginiaTech

Terrain Modeling

Vehicle Modeling

WirginiaTech

Multi-Body Dynamics

- ADAMS
- CarSim
- MATLAB/Simulink

Finite Element Analysis

- MSC/Nastran
- Abaqus / Simulia
- Ansys

Performance Prediction

WirginiaTech

Objective

Make informed decisions early in design process

Applications

- Ride and handling metrics
- Durability test schedules
- Reliability-Based Design

Motivation

- The pavement distortions should be inspected properly to monitor the health, safety and potential ride quality of roads.
- The inspectors mainly depend on visual inspection and visually decide which pavement should be repaired

John Ferris www.me.vt.edu/VTPL

VEHICLE TERRAIN PERFORMANCE LABORATORY

Problems

- Physical, in situ inspection is costly, requires that the road be closed to traffic
- Dangers to the inspector posed
- Post measurement inspection is less costly but is still based on 2D
- Automated methods for computer detection and analysis of cracks required for conducting validation and verification testing

Goals

- New method for pavement surface condition inspection that combines
 - Ability of physically inspection of in situ inspection
 - Speed, safety and a wider field of view and very high resolution offered by post-measurement inspection
- Fusing video data with high-fidelity terrain topology measurements
- Visualizing them on LHRD
- Provide quantitative data to eliminate or supplement components of current visual inspection procedures

VTMS Data

- A single dataset includes several millions of points.
- Difficult to visualize multiple VTMS datasets in small displays and desktop systems
- Massive amounts of computing power are required to render the high-fidelity VTMS data
- The resolution of the VTMS datasets is easily beyond the capability of current computer display and graphics systems

Large High-Resolution Display (LHRD)

WirginiaTech

- Much higher DPI (Dots Per Inch) than general displays
- Wider field of view to terrain data
- Terrain visualization on a scale comparable to real life

Expected Benefits of the New Platform

- A new method for 3D pavement condition inspection
- A new platform by which automated crack inspection and analysis software can be verified and validated
- An understanding of the run-to-run variation in roughness estimates
- Quality control and assurance procedures for pavement condition data collection

Visualization Prototypes 1

WirginiaTech

John Ferris
www.me.vt.edu/VTPL

Slide 16

Visualization Prototypes 2

WirginiaTech

John Ferris
www.me.vt.edu/VTPL

Slide 17

Visualization Protypes 4

WirginiaTech

John Ferris www.me.vt.edu/VTPL

Slide 19

Summary

- Developing a new method for pavement surface inspection
- VTMS data and LHRD provides a novel platform to inspect pavement interactively
- Understanding of the run-to-run variation in roughness estimates
- Support quality control and assurance procedures for pavement condition data collection.

