Pavement Surface Evaluation beyond Cracking with Deep Learning

Kelvin C.P. Wang

Oklahoma State University & WayLink Systems Corp

2019 RPUG & Pavement Evaluation Conference

Hotel Roanoke and Convention Center

Sept 19 2019

Four Parts

□ 1 : From 1mm 3D to 0.5mm 3D □Pave3D 8K

- 2 : Deep-Learning based AI System for Automated Cracking Analysis
- □ 3 : Non-Cracking Analysis with Deep-Learning
- **4** : 0.1mm 3D for Safety Analysis

Part 1: Current Applications of 3D Laser Imaging

Sample 3D Data at 1mm Resolution Collected at 60MPH 10 Years Ago

Sample 3D Data at 1mm Resolution Collected at 60MPH 10 Years Ago

Sample 3D Data at 1mm Resolution Collected at 60MPH 10 Years Ago

Pave3D 8K: the Next-Generation

- More than 8,000 Pixels in 2D & 3D in the Transverse Direction, Covering Full-Lane
- 30KHz Line Rate in the Longitudinal Direction:
 1mm longitudinal resolution at 60MPH
- Compatible with Current Deep-Learning Solutions
- Built-In Inertial Sensor for Longitudinal Profiling
- Cracking/Rutting/Patching/Pothole/Sealed Cracking, et al, and IRI

Pave3D 8K in Truck Mount

New Sensor Design

Sample Data of Manhole, Full-Lane 2D

Sample Data of Manhole, 2D & 3D

Sample Data of Manhole, Zoomed-In 2D

Light Reflector, Full-Lane Width

Light Reflector, Zoomed-In 2D

Light Reflector, Zoomed-In 3D

Al Analysis based on Deep-Learning

 Pixel Level Recognition
 Deep-Learning based Neural Network
 Big-Data with Parallel Processing
 Stability, Consistency, High-Speed, and Accuracy

Learning Database : Critical for Successful Learning

CrackNet: from Training to Operation

Pixel Level Intelligence

Automated Pixel-level Pavement Crack Detection on 3D Asphalt Surfaces with a Recurrent Neural Network [J], *Computer-Aided Civil and Infrastructure Engineering*, <u>https://doi.org/10.1111/mice.12409</u>.

First-Gen CrackNet

7 Layers1,159,561 Parameters

Sample Results of 1st Gen CrackNet

Samples of 2nd Gen CrackNet

Best CrackNet

Best CrackNet + RNN

CrackNet on Concrete Pavements

普通水泥路面

含路面刻槽(Groove)的水泥路面

Key Advantages of CrackNet

□Stability of Recognition

□>90% P & R

DAccumulated Learning

DNOT Based on Analytical Modeling

Other Non-Cracking Features : Markings, Man-Hole, Bridge Expansion Joint

DL based Marking Identification

Pothole Identification

Patching Identification

Sealed-Cracking Identification

0.1mm 3D Laser Imaging for Safety

Non-Contact 0.1mm 3D Imaging for Continuous Safety Evaluation

- Pavement Safety
 - Micro/Macro Texture, Friction
- Current Contact-Based Friction Testers
 - Decades old std, Contact/Water, Tire Wear
 - Large Variations in Consistency, Repeatability
- 0.1mm non-Contact Approach, Possible
- Critical
 - Data Quality, Processing Methods

Samples of 0.1mm 3D Pavement Surface

Samples of 0.1mm 3D Pavement Surface

Conclusions

- Sub-mm (0.1mm to 0.5mm) 3D Data & Processing Tech
 - Next-Gen & Next 10 Years
- Comprehensive: Condition, Function, Safety
- 5G/BIM/Cloud/VR/Exascale Computing: many available platforms
- Most Critical: Solutions to Users