

Sensitivity to Pavement ME Input Values (Version 2.5.4)

By

Dennis Morian

Quality Engineering Solutions, Inc.

Major Pavement Design Input Factors – A lot of moving parts in pavement performance prediction

- Traffic
- Subgrade
- Climate Effects
- Material Properties

Understanding the Impact of Input Variability on Pavement Design

- Many design input factors are estimated
 - Traffic
 - Climatic factors
- Others are measured, but may not be comprehensively representative of site conditions
 - Subgrade support, per CBR, Mr, or other location specific sampling technique
 - Material properties
- The accuracy of estimates are often not verified

Background for Information Presented

- Study Objective: Assessment of feasibility of using a single 50 gyration asphalt base course for all PennDOT projects
- Utilized asphalt mix E* values from Table 9.5 of PennDOT Pavement ME Design User Input Guide
- Considered the range of E* values for mixes available for other layers in asphalt pavement designs
- Considered the range of traffic levels, in-state climate conditions, and subgrade conditions

Primary Factors in '86 and '93 Guides

- Traffic
- Subgrade support
- Selection of reliability

Additional ME Factors

- More detailed input information, including
 - Improved climate modeling
 - Improved subgrade and aggregate characterization
- Viscoelastic asphalt material characterization
 - Temperature effects
 - Load Speed (test frequency)
 - Mixture properties

Study Traffic Levels Considered

Traffic	Category	Two-Directional AADTT	Vehicle Class Distribution	Axle Load Distribution Factors	
1	Low 700		Minor Arterials, Collectors, and Recreational (PA TPG5 to 10)		
2	Medium	2,308	Other Principal Arterial (PA TPG 3 & 4)	PA Statewide Typical)	
3	Heavy	14,920	Urban Principal Arterial-Interstate (PA TPG 1)		

Study Subgrade Stiffness Levels

Subgrade	Туре	Mr (psi)
1	RMS014-A6	6,200
2	RMS025-A24	20,400
3	Stabilized	50,000

ME Analysis Parameters @ 90% Reliability, for example

- Roughness, IRI 172 in,/mile
- Total Rut Depth 0.5"
- Fatigue Cracking 25% of lane area
- Low Temperature Cracking 1,000' per lane mile
- Top Down and Longitudinal Cracking is not used at this time

Pavement Section Variation Used, High Traffic Level

ASPHALT WEARING 9.5 mm	2.0 in		2 in	ACOLIAI T WEADING 0.5 mm	2 in		2 in
ASPHALT BINDER 19 mm	3.0 in	ASPRACT WEARING 9,5 mm		MOPTALI WEAKING 3,5 mm		ASPRALI WEARING 5,5 mm	2.01
		ASPHALT BINDER 19 mm	4.0 in	ASPHALT BINDER 19 mm	5.0 in	ASPHALT BINDER 19 mm	4.0 in
ASPHALT BASE 25 mm	5.0 in	ASPHALT BASE 25 mm	5.0 in	ASPHALT BASE 25 mm	5.0 in	ASPHALT BASE 25 mm	6.0 in
GRANULAR BASE A-1-a	6.0 in	GRANULAR BASE A-1-a	6.0 in	GRANULAR BASE A-1-a	6.0 in	GRANULAR BASE A-1-a	6.0 in
SUBGRADE		SUBGRADE		SUBGRADE		SUBGRADE	

Range of Pavement Thickness

Traffic Level	Wearing	Binder	25mm AC Base	Agg. Subbase	Total AC
• Low	2″	2.5 – 3.5"	3 – 4″	6″	7.5 – 9.5″
Medium	2″	3 – 4″	3.5 – 4.5"	6″	8.5 – 10.5″
• High	4 – 5″		5 – 6"	6″	11 – 13″

So, what is evident?

- How is a pavement design recommendation sensitive to input selection?
- Typical Relationships
 - Traffic volume
 - Subgrade support
- Additional material property different from AASHTO "93
 - Specific material properties, ie. Visoelastic behavior
 - Climate as it affects AC stiffness
 - Load Speed

Effect of Subgrade on Fatigue Prediction

Low Traffic, Subgrade MR 6,200 psi

- Low Traffic, Subgrade MR 50,000 psi
- Medium Traffic, Subgrade MR 20,400 psi
- Heavy Traffic, Subgrade MR 6,200 psi

- Low Traffic, Subgrade MR 20,400 psi
- Medium Traffic, Subgrade MR 6,200 psi
- Medium Traffic, Subgrade MR 50,000 psi
- Heavy Traffic, Subgrade MR 20,400 psi

Viscoelastic Asphalt Material Properties

• PA asphalt mix stiffness

Excerpt from Table 9.5 for 25 mm Base Mixes

Mix ID	Temperature (°F)	Dynamic Modulus (E*) in psi at Different Testing Frequency						
		0.1 Hz	0.5 Hz	1 Hz	5 Hz	10 Hz	25 Hz	
Mix6 25mm WMA Base PG 64-22 ESAL Range (0.3 to <3M) Ndesign = 75	14	2,483,674	2,718,217	2,798,141	2,942,814	2,990,330	3,042,116	
	40	1,384,881	1,806,912	1,977,385	2,326,880	2,454,415	2,601,280	
	70	352,626	599,857	737,737	1,118,219	1,299,069	1,542,680	
	100	79,064	132,296	168,094	297,275	378,484	514,000	
	130	32,324	43,479	50,824	78,124	96,591	130,495	
Mix17 25mm HMA Base PG 64-22 ESAL Range (<0.3M) Ndesign = 50	14	1,863,151	2,157,601	2,269,551	2,492,706	2,573,368	2,666,749	
	40	865,581	1,191,812	1,340,041	1,682,688	1,823,846	2,000,030	
	70	225,734	364,533	444,142	678,660	799,954	975,788	
	100	64,406	98,297	119,718	193,244	238,320	313,576	
	130	29,739	38,730	44,285	63,418	75,493	96,579	

Master Curves of Dynamic Modulus for 25 mm PennDOT Base Mixes

E* for Base Mixes in PennDOT Materials Catalog as a Function of Loading Frequency

PA Climate Effect on Asphalt Properties

- Coldest in state vs. Warmest in state
 - Bradford
 - Low temperature Typically 10 to -10
 - high temperature Typically 90-95 degrees F
 - Reading
 - Low temperature 0 to-20 degrees F
 - high temperature Typically 80-85 degrees F
- Reflected as Impact on material properties
 - Low temperature increases AC stiffness
 - High temperature decreases AC stiffness

PA Climate Effect on Asphalt Properties

• Bradford

Reading

E* values: Reading #4, Bradford # 5

----- Climate 4 ----- Climate 5 ---- Climate 6

 Traffic Level has a significant affect on pavement thickness!

Example Sensitivity of Fatigue Crack Prediction for a Single Mix at High Traffic Level

Medium Traffic Level, Fatigue Cracking Sensitivity

At low traffic level, fatigue cracking relatively insensitive, even though tolerance level is higher

Take a look at IRI affect on thickness at three traffic levels

Example IRI Prediction for a single mix at High traffic level

Medium traffic level IRI prediction

🗕 Medium Traffic, Mix 17 N=50 gyr R75% 📥 Medium Traffic Mix 17 N=50 R90% – 🗢 — Medium Traffic, Level 3 75% – ★ — Medium Traffic, Level 3 90% — Performance Limit

Contrast predictions for low traffic level

Reliability Impact on thickness at High Traffic Level

Significance to Design Thickness

- At lowest thickness level (7.5"), the fatigue cracking threshold is distinguished by reliability level (90 vs 75)
 - R=75% is below threshold,
 - R=90% does comply
- For R=90% one additional inch is required to comply with the fatigue cracking threshold equates to about 130% increase in traffic loading
- At 2 additional inches (9.5") the fatigue cracking performance is clustered below the threshold value 270% increase in traffic loading

Traffic Impact on Rutting, Low - High

- Low Traffic, Subgrade MR 6,200 psi
- Low Traffic, Subgrade MR 50,000 psi
- Medium Traffic, Subgrade MR 20,400 psi

- Low Traffic, Subgrade MR 20,400 psi
- Medium Traffic, Subgrade MR 6,200 psi
- Medium Traffic, Subgrade MR 50,000 psi

AC Rutting at Warm and Cold Temperature Extremes in PA

- Low Traffic, Warm Weather
- Low Traffic, Cold Weather
- Medium Traffic, Warm Weather
- Medium Traffic, Cold Weather
- Heavy Traffic, Warm
 Weather
- Heavy Traffic, Cold Weather

Thermal cracking predicted at Bradford (cold) vs. Reading (warm) climates, not sensitive to mix E*

Effect of Reliability

Example, 50 gyration mix effect on fatigue

Reliability effect on IRI

- ● - Medium Traffic, Level 3 75%

-▲-Medium Traffic, Level 3 90%

Reliability effect on Rutting

Observation Regarding the Impact of Reliability

- Reliability has a significant influence on the recommended pavement thickness
- There is no distinction for reliability by data input level, even though:
 - Level 1 includes greater detail, which should improve the reliability of the model
 - vs. Level 3 uses generic input with no specific refinement of the model
- Lower level reliability (50%) is recommended for lower volume roads, although investment cycles for these roads is typically longer than for higher volume roads

Observations

- Traffic and subgrade support are still significant,
- At hi traffic level, predicted differences in performance are significant
- Climate effect can have significant impact on AC material properties
- Specific AC mix properties can have significant impact
 - Loading rate
 - AC binder stiffness
 - Effect of aggregate and binder sources for the same class of material, i.e., 25 mm base
- Impact of Reliability associated with data input level, detailed vs. national average
- Reliability impact on predicted pavement performance
- Other relationships between other project specific factors

Questions?

