Effect of Roughness-Induced Dynamic Load on Pavement Fatigue Life Using Mechanistic-Empirical Approach

Farzan Kazemi, Ph.D.

Pavement Engineer Michael Baker International

Vahid Ganji, Ph.D., P.E.

Pavement Department Manager Michael Baker International

Pavement Evaluation 2019 Conference

1

September 18, 2019

We Make a Difference

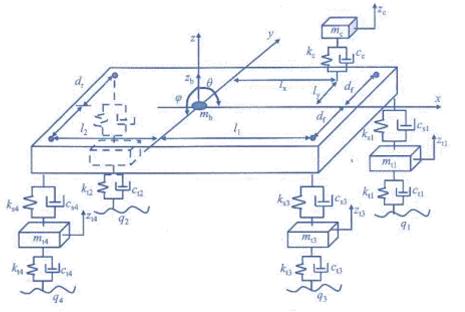
Presentation Outline

- Introduction
- Single-Point Contact (SPC) Models
- Effect of Roughness on Fatigue Life
- Conclusions

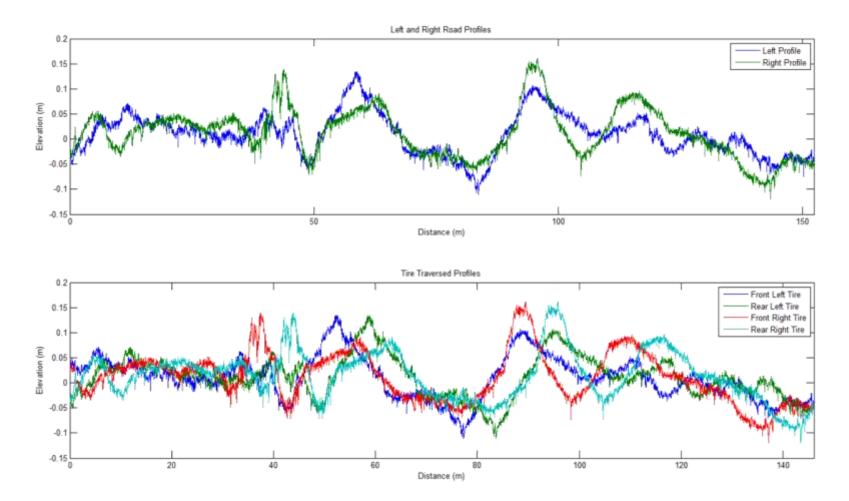
Introduction

- Dynamic load is a significant parameter in pavement responses analysis models.
- It is essential to reliably estimate pavement mechanical responses under dynamic loading.
- Road roughness is one of the main contributing factors to vehicle dynamic loads.
- International Roughness Index (IRI) is the most common measure for road roughness.

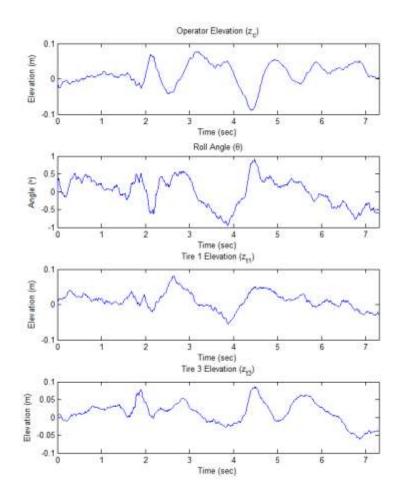
Introduction

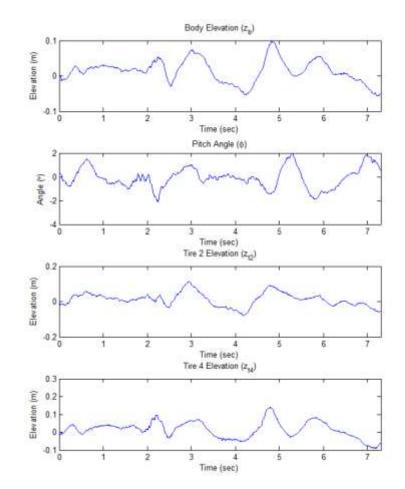

Dynamic loading Factors

- Road Profile
- Vehicle Speed
- Suspension



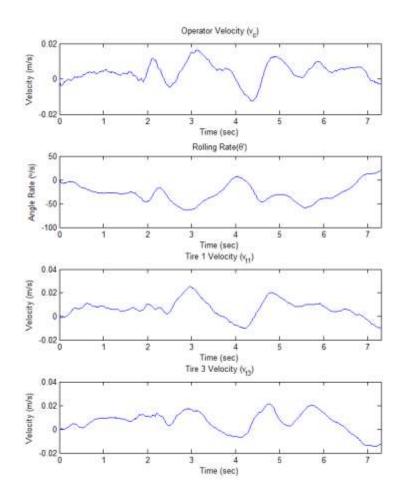
Full-Car Simulation Formulation

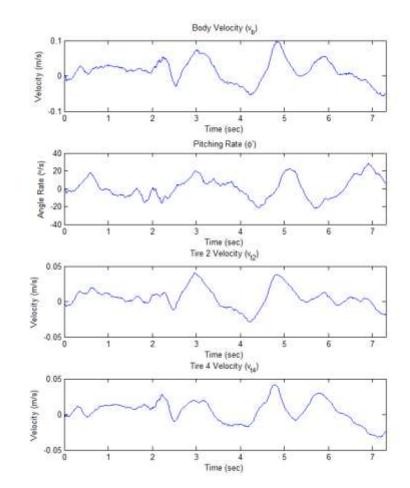

- There are **12** unknowns associated with the model shown below.
- Solution is based on state-space modeling.
- Yaw, pitch, and roll effects are considered in this type of simulation.



Full-Car Simulation Road Profile

Full-Car Simulation Elevations

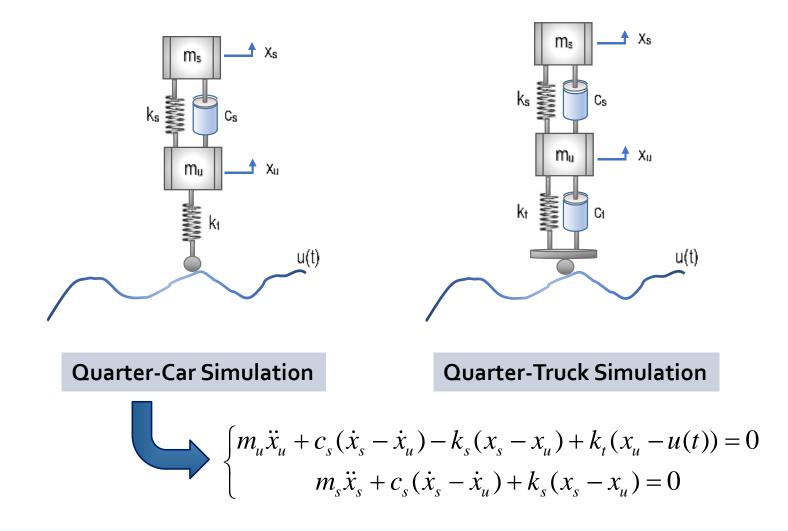




Michael Baker

7

Full-Car Simulation Velocities



Michael Baker

Michael Baker

Single-Point Contact (SPC) Models

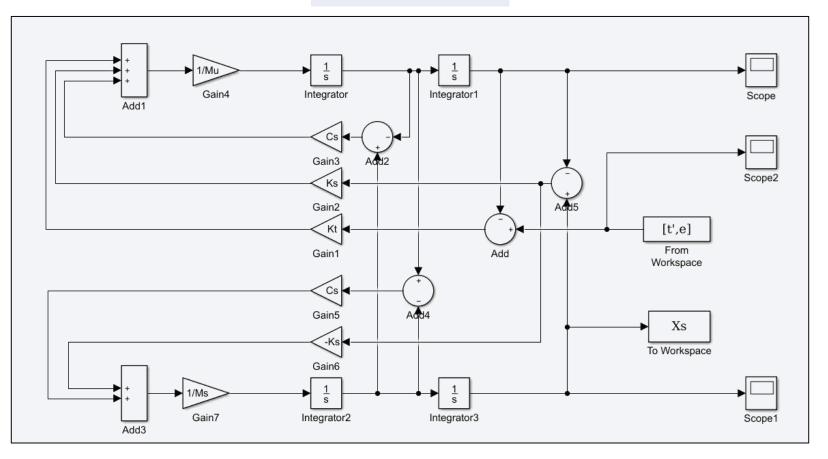
Quarter-Car

Quarter-Truck

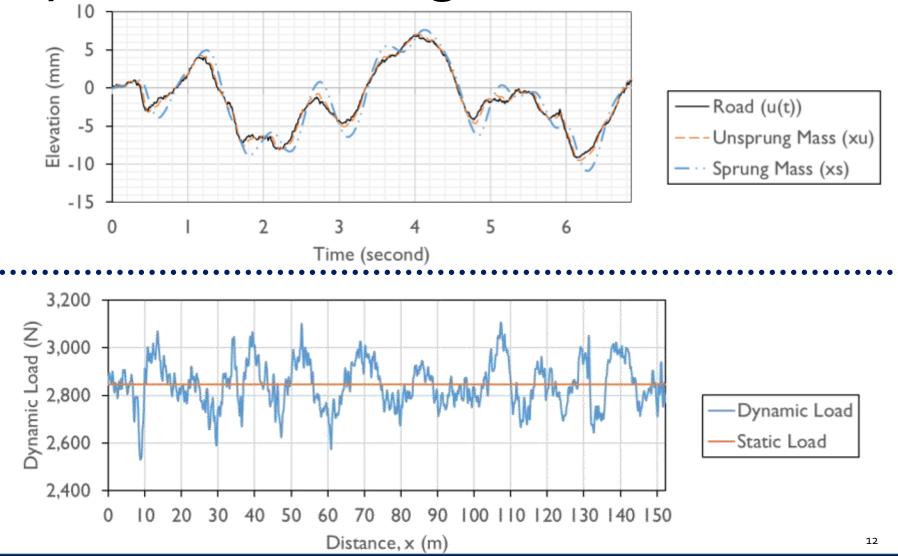
Single-Point Contact (SPC) Models

Parameter	Value
$c = c_s / m_s$	6.0
$k_1 = k_t / m_s$	653
$k_2 = k_s / m_s$	63.3
$\mu = m_{\mu}/m_s$	0.15

$$RI = \frac{1}{L} \int_0^T |\dot{x}_s(t) - \dot{x}_u(t)| dt$$


(V = 50 mph = 80 km/h) 1 m/km = 63.36 in./mile

Parameter	Symbol	Unit	Howe et al.	Wambold	Collop	
Sprung Mass	m _s	kg	3,400	m _s	-	
Suspension Elastic Constant	k _s	N/m	270,000	118.1 m _s	230,000	
Suspension Damping Constant	C _s	N.s/m	6,000	4.71 m _s	I,500	
Unsprung Mass	m _u	kg	350	0.146 m _s	400	
Tire Elastic Constant	k _t	N/m	950,000	755.1 m _s	I,000,000	
Tire Damping Constant	<i>c</i> _t	N.s/m	300	-	I,000	


We Make a Difference

Dynamic Loading Simulation

Simulink Model

Dynamic Loading Simulation

Dynamic Loading Indices

Static and Perturbation Load

$$F_{perturbation} = k_t(x_s - u(t)) + c_s(\dot{x}_s - \dot{u}(t))$$

 $F = F_{static} + F_{perturbation} = (m_u + m_s) \cdot g + k_t (x_s - u(t)) + c_s (\dot{x}_s - \dot{u}(t))$

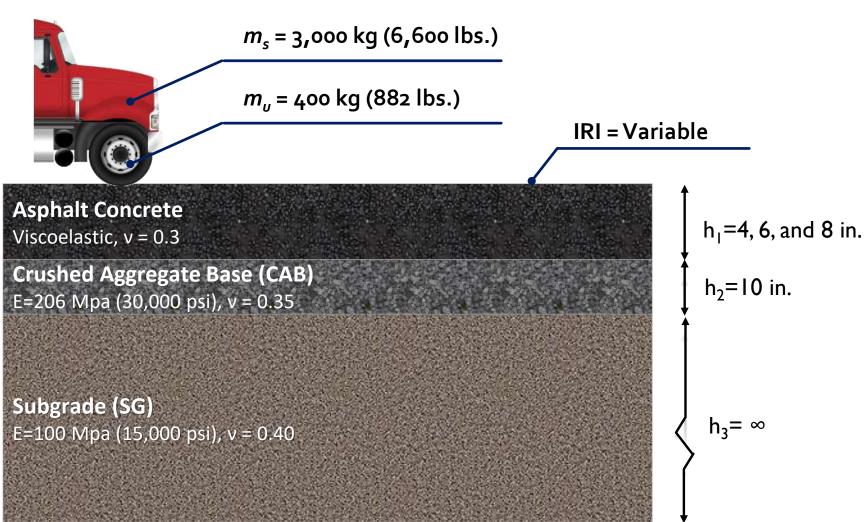
Dynamic Load Coefficient (DLC)

$$DLC = \frac{1}{\bar{F}} \sqrt{\frac{\sum_{i=1}^{N} |F_i - \bar{F}|}{N - 1}} \times 100$$

Impact Factor

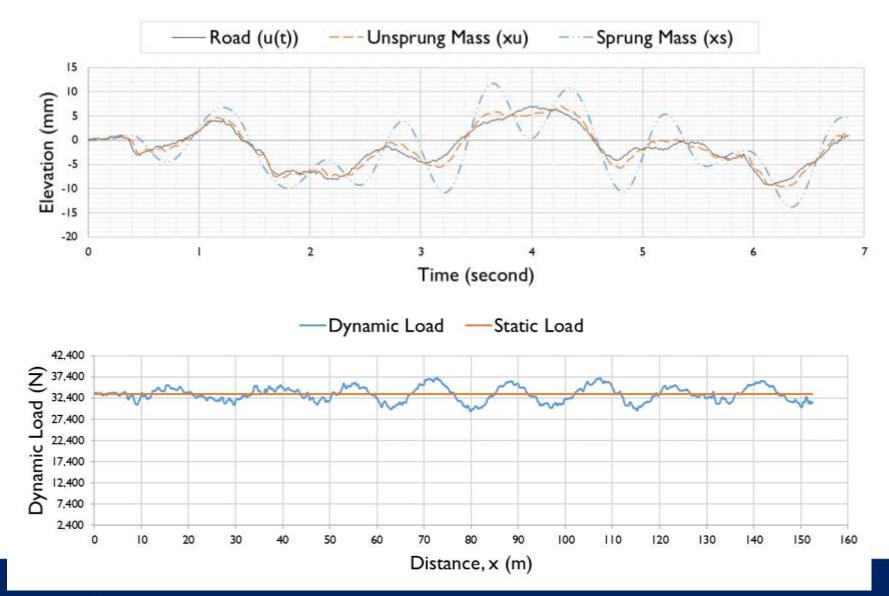
$$I = \frac{F - F_{static}}{F}$$

Fatigue Cracking

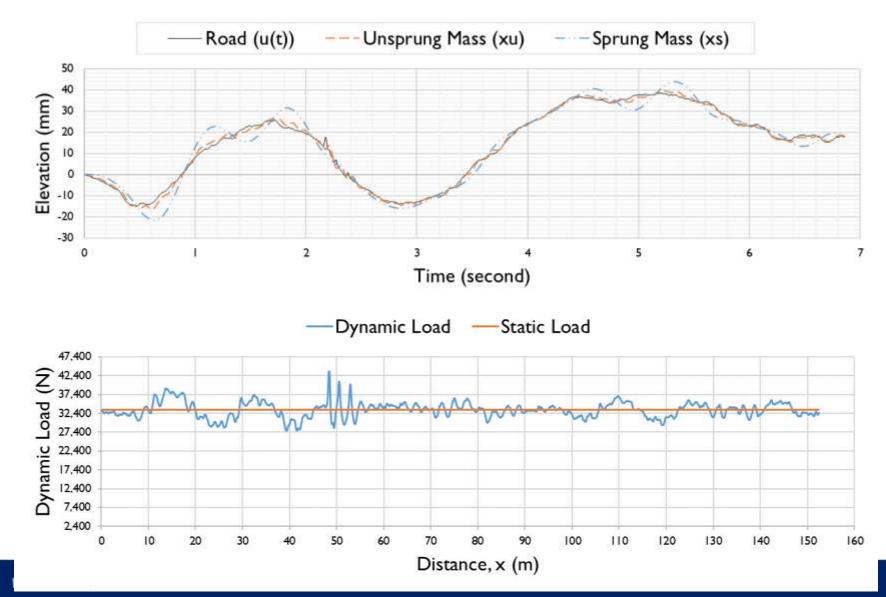

- MEPDG Fatigue Performance Models was used.
- Assuming linear viscoelasticity modeling to calculate ε_{t}

$$\log(N_f) = \beta_{f_1} k_{f_1} \cdot \left(\frac{1}{\varepsilon_t}\right)^{\beta_{f_2} k_{f_2}} \cdot \left(\frac{1}{E}\right)^{\beta_{f_3} k_{f_3}}$$

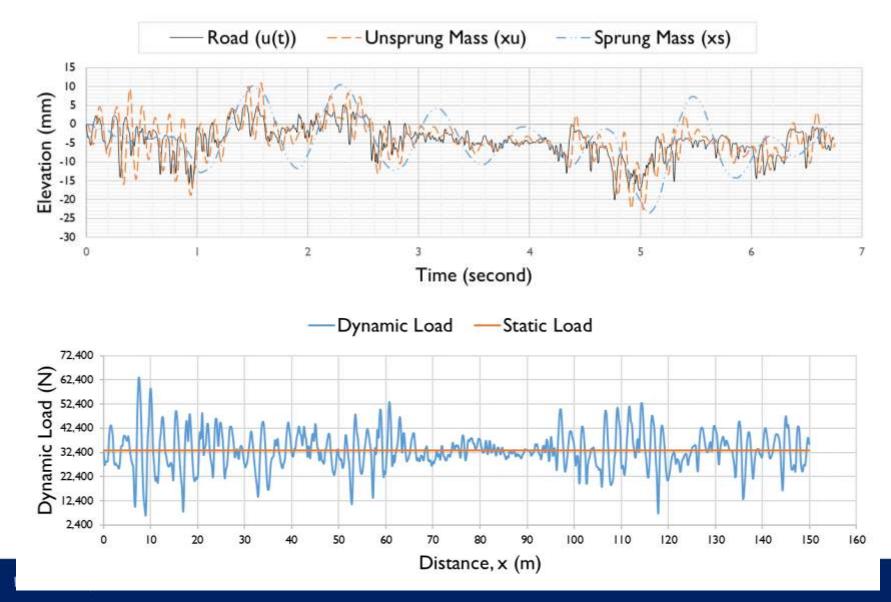
 N_f = Number of repetitions to fatigue cracking ε_t = Tensile strain at the critical location E = Stiffness of the material β_{f_1} , β_{f_2} , β_{f_3} =Calibration Parameters


Michael Bake

Pavement Structures



Road Profiles Profile #1: Very Smooth



Road Profiles Profile #2: Smooth

Road Profiles Profile #3: Rough

Results Quarter-Truck Simulation

Road Profile ID	IRI	IRI _{truck}	Static Load	Maximum Dynamic Load	DLC	lmpact Factor
I	0.499 m/km (31.6 in./mi)	1.017 m/km (64.43 in)		37,237 N (8,371 lbf)	5.2%	0.12
2	0.886 m/km (56.1 in./mi)	1.675 m/km (106.1 in./mi)	33,354 N (7,498 lbf)	43,561 N (9,793 lbf)	6.2%	0.31
3	3.606 m/km (228.5 in./mi)	6.536 m/km (414.1 in./mi)		63,211 N (14,210 lbf)	22. 9 %	0.90

Results Pavement Structural Modeling

Road Profile ID	IRI	HMA Thickness	Speed	ε _t Static Load (μs)	ε _t DLC- based (μs)	ε _t IF- based (μs)	
	0.499 m/km (31.6 in./mi)	6 in. (15.2 cm)		132	139	155	
I.		8 in. (20.3 cm)	50 mph (80 km/h)	87	92	102	
		10 in. (25.4 cm)		58	61	68	
	0.886 m/km (56.1 in./mi)	6 in. (15.2 cm)		132	140	183	
2		8 in. (20.3 cm)		87	92	121	
		10 in. (25.4 cm)		58	62	80	
	3.606 m/km (228.5 in./mi)		6 in. (15.2 cm)		132	162	307
3		8 in. (20.3 cm)		87	107	203	
		10 in. (25.4 cm)		58	71	135	

Results Roughness-Induced Fatigue Life Reduction

Road Profile ID	HMA (in.)	Speed (mph)	<i>N</i> _f Static Load	N _f DLC-based	%	<i>N_f</i> IF-based	% N _f Red. IF-based
I	6		619,364	477,644	23%	276,170	55%
I	8	50 mph (80 km/h)	5,039,198	3,804,778	24%	2,264,618	55%
I	10		38,709,605	30,039,141	22%	17,396,114	55%
2	6		619,364	460,734	26%	119,820	81%
2	8		5,039,198	3,804,778	24%	959,317	81%
2	10		38,709,605	27,680,739	28%	7,683,204	80%
3	6		619,364	221,164	64%	8,886	99%
3	8		5,039,198	I,780,273	65%	71,126	99%
3	10		38,709,605	14,001,436	64%	553,184	99%

Results Fatigue Life vs. Road Roughness Level

Wichael Baker

8 in. HMA 6 in. HMA 700,000 6,000,000 600,000 5.000.000 500,000 4,000,000 A -400,000 ž € 3,000,000 300,000 Q Q 2,000,000 200,000 -0 1,000,000 100,000 0 0 50 100 150 200 250 50 100 150 200 250 0 0 IRI (in./mile) 10 in. HMA 45,000,000 40,000,000 - [] 35,000,000 30.000.000 ž 25,000,000 20,000,000 Q 15,000,000 10,000,000 5,000,000 0 50 100 150 200 250 0 IRI (in./mile) – 🖶 – Nf: No Roughness - 👉 - Nf: DLC-based $- \ominus - Nf$: IF-based

Conclusions

- Roughness causes higher dynamic load, which in turn causes shorter fatigue life.
- DLC-based fatigue life analysis revealed ~25% reduction in fatigue life for high smooth and smooth pavements but a larger life reduction of ~65% for rough pavement.
- IF-based fatigue life analysis is very conservative and shows significant life reduction specifically for rough pavement. This may translated into local fatigue failures at locations with high dynamic loads.
- For the analyzed profiles, the reduction percentage in fatigue life due to road roughness is irrespective of pavement structure.

Future Work and Improvements

- Dynamic Models (3D-FAST)
- Effect of Speed and Temperature
- Monte-Carlo Simulations
- IRI model
- Random Profile
- Full-Truck Simulation and/or Miner's rule
- Air and rubber suspension
- Non-linear suspension modeling
- Considering damage accumulation

THANK YOU Questions