

Investigation of Profile-Based Curl and Warp Analysis Using LTPP Profile Data

By

Steven M. Karamihas

University of Michigan Transportation Research Institute

With Kevin Senn and Timin Punnackal, NCE

And Larry Wiser, FHWA

AZ Section 040213, Upward Curl

Source: FHWA **PE 2019**

Advancement of Curl and Warp.....

- Estimate the level of curl and warp of JPCC using profile.
- Relate curl and warp to roughness.
- •Refine an existing method.
- Apply the method to a broader set of sections.

"What would the roughness be without curl and warp?"

Core Method (Chang, Rasmussen, et al.)

- Locate the joints.
- Isolate slab profiles.
- Fit slab profiles to an assumed function (Westergaard).
- Cast the result in terms of strain gradient.
- Aggregate over a test section.

Joint Finding

© FHWA PE 2019

Isolated Slab Profile

Source: FHWA-HRT-12-068

Fitted Slab Profile

Source: FHWA-HRT-12-068

Westergaard Model

$$z = -z_0 \frac{2 \cos \lambda \cosh \lambda}{\sin 2\lambda - \sinh 2\lambda} \left[(-\tan \lambda + \tanh \lambda) \cos \frac{x}{l\sqrt{2}} \cosh \frac{x}{l\sqrt{2}} + (\tan \lambda + \tanh \lambda) \sin \frac{x}{l\sqrt{2}} \sinh \frac{x}{l\sqrt{2}} \right]$$
$$+ (\tan \lambda + \tanh \lambda) \sin \frac{x}{l\sqrt{2}} \sinh \frac{x}{l\sqrt{2}} \right]$$
$$\lambda = \frac{b}{l\sqrt{8}} \qquad l = \sqrt[4]{\frac{Eh^3}{12(1-\mu^2)k}} \qquad z_0 = \frac{-(1+\mu)(\alpha \Delta T + \Delta \varepsilon_{sh})}{h} l^2$$

$$PSG = \frac{(\alpha \Delta T + \Delta \varepsilon_{sh})}{h}$$

Idealized Slab Shapes

Source: Rasmussen

Structural Evaluation, Spatial Trends

© FHWA

Structural Evaluation, Trends Over Time

Structural Evaluation, by Test Section

IRI Versus PSG, Hypothesis

TRB 2008, Session 573

IRI Versus PSG, Hypothesis

TRB 2008, Session 573

Idealized Profile (l = 40 inches)

IRI versus PSG

© FHWA **PE 2019**

IRI/PSG Slope

Uplift and PSG

$$z(x) = z_0 f(x,l,b) = -PSG(1+\mu)l^2 f(x,l,b)$$

$$\Delta z = z(b/2) - z(0) = -PSG(1+\mu)l^2 \left(1 - \frac{s_{\lambda}ch_{\lambda} - c_{\lambda}sh_{\lambda}}{s_{\lambda}c_{\lambda} - sh_{\lambda}ch_{\lambda}}\right)$$

IRI Versus Uplift

Idealized Curl and Background Roughness

© FHWA

Idealized Curl and Background Roughness

Idealized Curl and Background Roughness

$$IRI_{Comb} = \sqrt{IRI_{Curl}^2 + IRI_{Back}^2}$$

$$IRI_{Comb} = \sqrt{\left(PSG\frac{dIRI}{dPSG}\right)^2 + IRI_{Back}^2}$$

Background Roughness

© FHWA

PE 2019

$$IRI_{Back} = \sqrt{IRI_{Comb}^2 - A\left(PSG\frac{dIRI}{dPSG}\right)^2}$$

Read Profile User's Group

Section-Wide PSG Average

IRI versus PSG, FHWA Data

IRI versus Uplift, FHWA Data

© FHWA PE 2019

IRI versus Uplift, LTPP Data

IRI versus Uplift, LTPP Data

Assessment

- The fitted values relating IRI to uplift were not systematically related to the theory.
- This could be caused by:
 - The structural model.
 - The "sum of squares" model.
 - The low number of slabs per section.
 - Some other thing I haven't noticed.

Possible Next Steps...

- •Notice something new.
- Difference profiles.
- Spectral methods.
- Specialized filters.
- "Advanced" methods.

The Report.....

is in the editing phase.

Thank you!!!!

