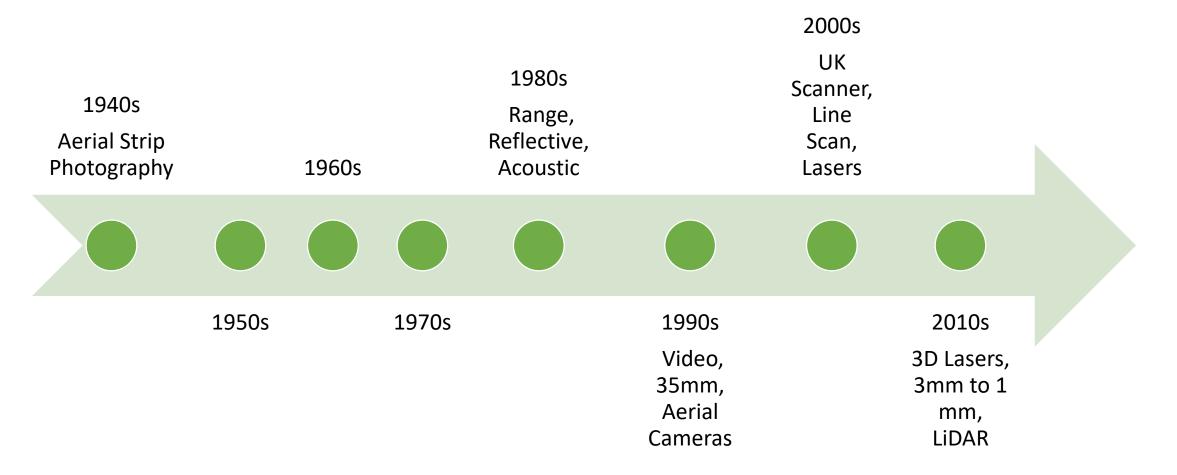


Historical Advancements in High Speed Distress Data Collection

Douglas Frith Quality Engineering Solutions, Inc.

Acknowledgements

- Dennis Morian QES
- Andy Mergenmeier FHWA
- TPF-5(299) Improving the Quality of Pavement Surface Distress and Transverse Profile Data Collection and Analysis


Presentation Outline

- History of Cracking Distress Data Collection
- Current Practice
- Implementation

Historical Overview of High Speed Cracking Distress Data Collection

PE 2019

1990 SHRP DIM 2nd Version 1994 Extent Severity, Intensity, Pattern, Location

1999 ASTM D6433, VDOT Automated Distress Manual

2004 NCHRP Synthesis 334, Automated Pvt Distress Collection Techniques

2014 LTPP DIM 5th Version

SCANNER

2005 UK

2016 Pooled Fund Std Data Format

Historical Overview of National Cracking

1987 SHRP DIM

1993 LTPP DIM 3rd Version

Definitions/Standards

1998 ASTM E1778 Standard Terminology

2003 LTPP DIM 4th Version 2014 Noted need for standard Calibration

PE 2019

35mm, PASCO 1990 Video,

SCANNER 2005 UK

Fully Automated 2011 Attempt 1mm Crack Detection

2015 True 1mm

1946 Aerial Strip Photography

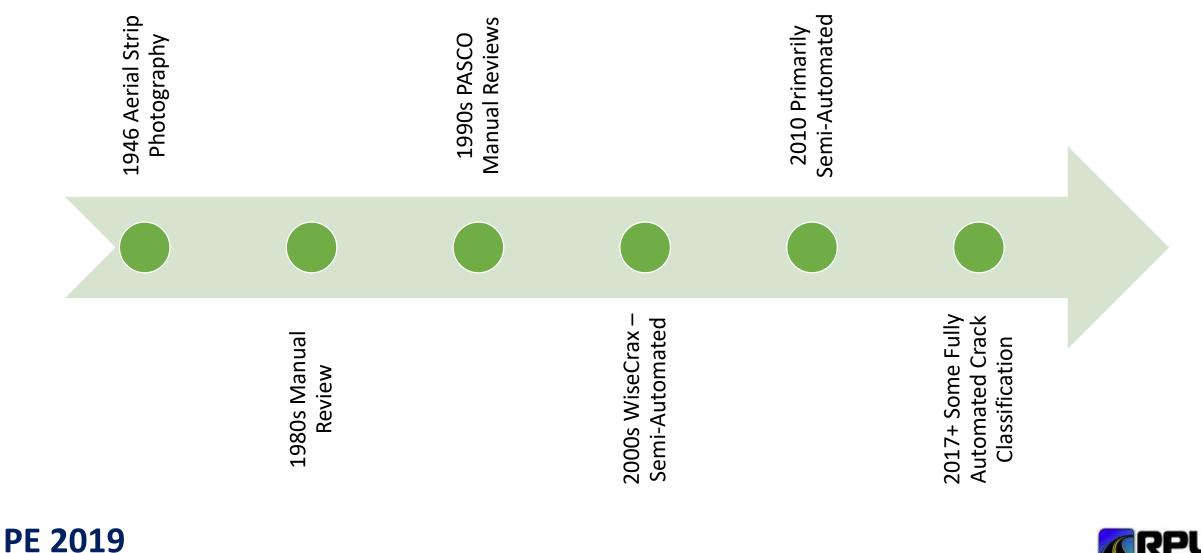
1987 Range, Reflective, Acoustic 1998 High Speed

Aerial Cameras

Historical Overview of Imaging Systems

2010 Transition from 2D to 3D

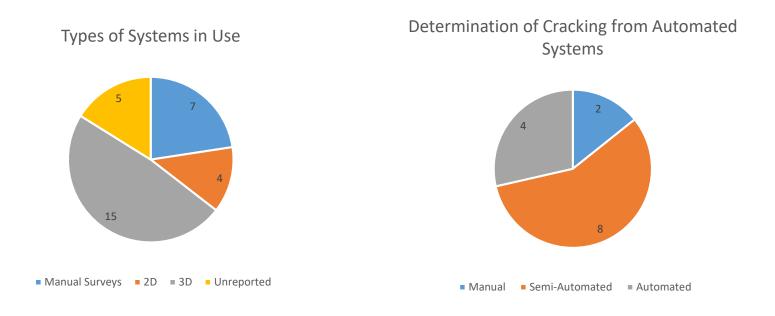
Introduction, 3D Laser is Proven 2013 LiDAR


Successful

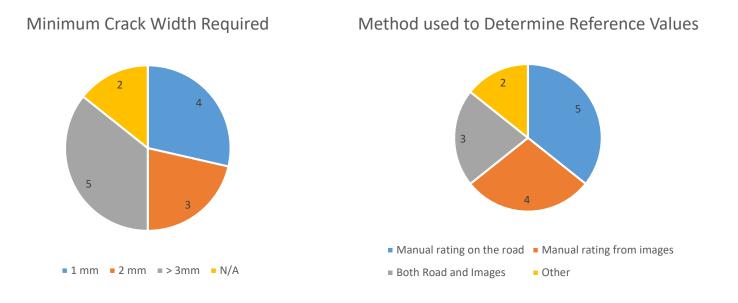
2017 LCMS II

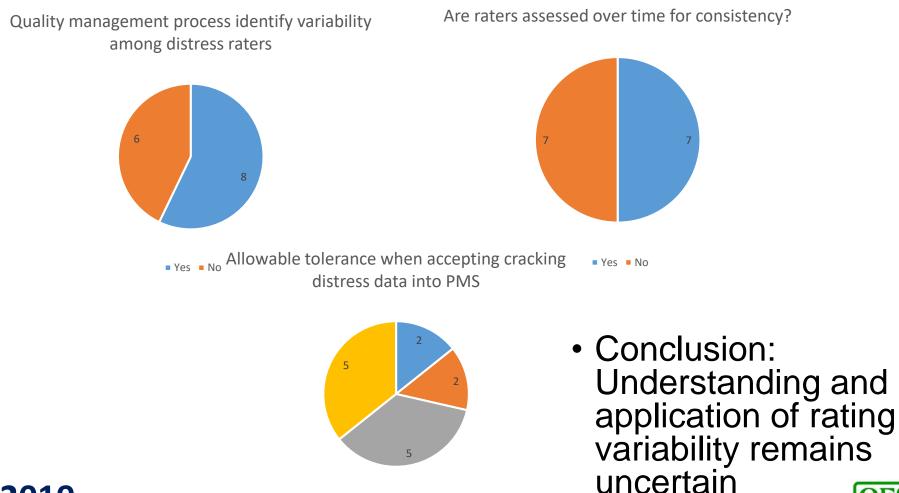
Introduced

Historical Overview of Automated Cracking Classification



Current Practice


- Literature Review and Information Gathering
 - Reviewed and summarized over 30 documents
 - Domestic and international literature
 - Sent agency specific questions to pooled fund agencies
 - Have had conversations with multiple data collection vendors


- Conclusion: For procurement the industry standard is 3D
- Conclusion: Over half of the agencies are using semi-automated detection

- Conclusion: Minimum crack width required varies
- Conclusion: Agencies see value with comparison to manual road surveys

QES Quality Engineering Solutions

What Distress Types are used in PMS?

- Two aspects of this
 - Distress types and severities which trigger action in PMS
 - Importance (weight) of distress in causing action
- Distresses which trigger treatment in the PMS
 - Identify which distresses trigger a treatment recommendation
 - Are PMS recommendations sensitive to severity level?
- Other information otherwise used by the agency

Primary distress driving decision making

Asphalt	12 Agencies Reported		
	Severity		
	All	Med/High	High
Fatigue Cracking	7	4	
Longitudinal Cracking	7	1	
Transverse Cracking	7	2	1
Block Cracking			
Patching	3		
Potholes	2		
Surface Deterioration	2	1	1
Bleeding			1
Joint Deterioration	1	1	1
Rutting	6	3	1
Other	2		

Conclusion: Fatigue, transverse and longitudinal cracking and rutting are the primary decision making factors – generally at all severity levels

Primary distress driving decision making

Jointed Concrete Pavement	11 Agencies Reported		
	Severity		
	All	Med/High	High
Corner Breaks	5	1	
Longitudinal Cracking	7	2	1
Transverse Cracking	8	2	1
Divided Slab	3	1	
Durability Cracking	2		
Joint Deficiencies	2	1	1
Surface Deducts	1		1
Faulting	5	1	
Patching	2	1	
Other	2		

 Conclusion: Transverse, longitudinal, corner cracking and faulting are the primary decision making factors – generally at all severity levels

Primary distress driving decision making

Continuously Reinforced Concrete	5 Agencies Reported		
	Severity		
	All	Med/High	High
Longitudinal Cracking	3	1	
Transverse Cracking	3		1
Durability Cracking	2		
Surface Deducts	1		
Patching	2	1	
Punchout	4		
Cluster Cracking	1		
Other			

Conclusion: Punchouts, longitudinal and transverse cracking are the primary decision making factors – generally at all severity levels

Agency Challenges During Transition

- Maintain network level distress data collection
- Data of sufficient quality to effectively support PMS recommendations
- Annual reporting
- Communication of changes
- Ability to provide project level data

Agency Implementation Challenges

Options

- Maintain historical consistency
 - Adjust for bias between systems
 - Modify condition categories based on change in values
- Develop new performance models
 - Develop new index calculations
 - Adjust performance curves
 - Adjust selection criteria

Thank You!

QESpavements.com

