

Assessment of Jointed Concrete Pavement Using Continuous Deflection

Jerry Daleiden, P.E. ARRB Group, Inc.

Evolution of PCC Structural Assessments

Three goals:

- 1. Review challenges/pitfalls of
 - A. Traditional assessments
 - B. Original TSD on PCC
- 2. Share recent findings
- 3. Review case studies and potential implications

"Rigid Pavements"

- By definition are intended to be VERY stiff.
- Should (by design) have very little deflection.
- We are seeking the exceptions.
 - "The needles in the haystack"

Continuous vs. Sampled

Pavement Assessment historically "Sample" based

Pavement conditions, vary along roadways

- Ride
- Density (Intelligent Compaction, Infrared, GPR)
- Segregation (Texture)
- Structural Integrity (TSD, GPR)

Traditional Strength Measurement

Structural Assessment - Evolved

Continuous Deflection Measurement

Google Virginia 2017 Maximum Deflection, Road ID: 60 Forward L0 Chainage: 15.262ml

W HAWKEYE : INSIGI-IT

ld

Road Network Data

Structurally Deficient+ (Case 1)

Case #2 – Structurally Deficient, but?

PE 2019

Kansas 2018 Maximum Deflection (D0), Road ID: 0070W Reverse L0 Chainage: 23.074mi [0004 L0 sub-chainage: 3.800mi]

Case #2A – Structurally Deficient, but?

PE 2019

Structurally Deficient But...? (Case 2)

- Availability of Continuous Structural Capacity:
 - Facilitates detection of structural deficiencies,
 - In spite of Good Surface Condition.
- Enables Agencies to be more proactive:
 - Plan for future,
 - Rather than reacting to deterioration.

HAWKEYE : INSIGHT

Road Network Data

Structurally Adequate, But? (Case 3)

All Good (Case 4 ... Celebration ⁽²⁾)

Net Result

Collecting Continuous Structural Capacity Data, as part of an overall assessment provides:

- Better understanding of overall pavement condition
- Less traffic disruption
- Opportunity for better project and treatment selection
- More Cost Effective

Comprehensive Assessment Opportunities

Network Level Evaluations:

Which roads require treatment.

What treatments should be planned.

More Comprehensive Assessment of Network.

Project Level Evaluations Localized areas requiring unique treatment. Additional Structure Needed.

Questions ?Is load transfer efficiency still the best metric for evaluating JCP structural capacity? ?What metric(s) are needed?

- What are the perceived limitations and/or potential approaches for mitigation?
- What additional applications merit consideration?

PE 2019

