

Multi-Variable Analysis for Pavement Assessment

Nate Bech ARRB Group, Inc.

Objectives

- 1. Review continuous pavement data
- 2. Examine pavement metrics and distress
- 3. Share case studies
- 4. Discuss advantages and limitations

Continuous Data

- Continuous properties being measured
- Provides detailed assessment of project

Continuous Data Collection

How to Use Continuous Data?

Individual data streams

Group data streams by type

Analyze all data streams together

Single Data Stream

Cracking shows areas of surface distress, but not cause of distress

Wheelpath Cells Cracked > 25%

Group Data by Type

- Cracking shows areas of surface distress, but not structural condition
- Deflection shows structural condition, but not extent of surface distress

Wheelpath Cells Cracked > 25%

D0 > 35 mils

Use All Data Streams

Combining cracking and deflection highlights areas of structural concern

Wheelpath Cells Cracked > 25%

and

D0 > 35 mils

Use All Data Streams

Combining cracking and deflection highlights areas of structural concern

Multi-Variable Analysis

Strength Metrics: Deflection, deflection velocity, indices

Surface Metrics: Roughness, rutting, cracking, texture

Combination of metrics determines appropriate treatment:

Surface Metrics

		Rough Surface	Smooth Surface
Strength Metrics	High Deflection	Full depth repair	Monitor / plan for repair
	Low Deflection	Surface preservation	No treatment

PF 2019

Critical Combinations

Case 1: High Deflection / Rough Surface Case 2: High Deflection / Smooth Surface Case 3: Low Deflection / Rough Surface Case 4: Low Deflection / Smooth Surface

Surface Metrics

		Rough Surface	Smooth Surface
Strength Metrics	High Deflection	Full depth repair	Monitor / plan for repair
	Low Deflection	Surface preservation	No treatment

Filtering Continuous Data

Create Advanced Filter Query 🛛 🗙						
Select Filter Primary Routes - Smooth Surface / 🗸 🧭						
IRI Average 🗸 <- 🔪	120					
Rut Depth Right 🗸 <= 🔪	0.33					
Maximum Deflection (E 🗸 >= 🚿	-5 🖯					
						
or						
Add new group						
Filter Query Description = (IRI Average <= 120 AND Rut Depth Right <= 0.33 AND Maximum Deflection (D0) >= -5)						

High Defl., Rough Surface (Case 1)

Deflection and alligator cracking identify fatigue damage

- D0 > 15 mil
- Cells Alligator Cracked > 25%

High Defl., Rough Surface (Case 1)

Deflection and roughness identify problematic approach slabs

- D0 > 12 mil (300 um)
- IRI Avg. > 250 in/mi

High Defl., Smooth surface (Case 2)

Deflection indicates weak structure despite smooth surface

- D0 > 15 mil
- Total Cells Cracked < 25%
- Rut Avg. < 0.3 in
- IRI Avg. < 150 in/mi

High Defl., Smooth Surface (Case 2)

SCI 8 indicates weak intermediate layers despite smooth surface

- SCI 8 (|D8-D0|) > 5 mil
- Total Cells Cracked < 25%
- IRI Avg. < 150 in/mi

High Defl., Smooth Surface (Case 2)

SCI Subgrade indicates weak subgrade under smooth surface

- SCI Subgrade (|D60-D36|) > 5 mil
- Total Cells Cracked < 10%

Low Defl., Rough Surface (Case 3)

Low deflection suggests rough section is structurally adequate

- IRI Avg. > 200 in/mi
- D0 < 10 mil

Low Defl., Rough Surface (Case 3)

Low deflection confirms cracked area is structurally adequate

- Wheelpath Cells Cracked > 50%
- D0 < 10 mil

Low Defl., Rough Surface (Case 3)

Low deflection confirms patched, rough area is structurally adequate

- IRI Avg. > 300 in/mi
- D0 < 10 mil

Low Defl., Smooth Surface (Case 4)

All is good!

• D0 < 5 mil

80

0

- Rut Right < 0.33 in
- IRI Avg. < 120 in/mi

Advantages

- Identify distress mechanism
- Improved treatment selection
- Multi-scale application

IRI Avg. > 200 in/mi, D0 < 10 mil

Limitations

- Critical distress combinations vary
- Unknown variables
- Use in pavement
 management
- Large amount of data (~1.5 GB/mile)

Wheelpath Cells Cracked > 25%, D0 > 35 mils

Questions

- What other combinations of metrics should be used?
- How should critical combinations be defined for different pavement types/classes?
- How can continuous data be used in existing pavement management systems?

Nate.Bech@arrbgroup.net

