# On Board Monitoring of 270 Trucks: Data Analysis Case Study

Linda Ng Boyle and Yiyun Peng
Industrial and Systems Engineering
Civil and Environmental Engineering
University of Washington

Presented at: 2<sup>nd</sup> International Symposium on Naturalistic Driving Aug 2010



## Background

- Providing drivers feedback can help
  - enhance drivers' immediate driving performance
  - induce long-term positive changes in driving behavior (Donmez et al, 2008; McGehee et al, 2007)
- Safety/fleet managers have a great influence on the safety attitudes and motivation of drivers (Newman et al, 2008; Arboleda et al., 2003)
- Initial pilot study demonstrated that feedback to commercial drivers hold promise (Hickman et al, 2009)



## Study Objective

- To examine whether safe driving habits can be enhanced and risky behavior be reduced among commercial drivers with
  - Real-time feedback
  - Coaching from safety supervisors
- On-Board Monitoring System (OBMS) for Commercial Motor Vehicle safety
  - Research program sponsored by Federal Motor Carrier Safety Administration (FMCSA)
  - In support of their mission to reduce the number and severity of crashes related to large trucks



#### Real-Time Feedback

- Safety/Performance Event Notification
  - Notify drivers when a safety or performance event has been captured for coaching.
  - Safety event capture: e.g., Large lateral acceleration,
     Forward collision.
  - Performance event: e.g., hard brake
- Driver State Notification
  - E.g., Aggressive, Inattentive
- Imminent Crash Warning
  - Forward Collision, Lane departure





## Coaching by safety supervisors

- Record snippets on unsafe driving behaviors (e.g., hard braking)
  - Video data and vehicle kinematic measures
- Reviewed by safety supervisors and used to coach the driver
- Same data will also accessed by research team for an independent evaluation



#### Data collection

- 270 trucks will have OBMS devices
  - With up to 500 drivers
  - And 18 driver-months of data per driver
- Includes baseline and withdrawal period
  - Identify relative increases/decrease in performance
  - Identify any lasting or residual effects from using the system
- Includes comparison group
  - Drivers who receive no feedback for entire period
- Data will be collected on:
  - Vehicle kinematics
  - Video data
  - Driver Questionnaires



#### **Data Collection Overview**

Cooperative Agreement Team Manager: VTTI

Vendor/Data Collector: Transecurity

Independent Evaluator: University of Washington

**Study 1**: OBMS/EOBR Evaluation Type of Data: Epoch

Data Collector: Transecurity

IRB of Record: University of

**Washington** 

**Study 2**: Naturalistic Data Collection

Type of Data: Continuous
Data Collector: Transecurity
IRB of Record: Virginia Tech





#### **Constraints**

- Devices take time to install
  - There is a six-month installation period
  - Total data collection will be conducted over 24 months
- Maximize driver exposure to intervention method (feedback)
  - Also to account for carriers' expectation
- Need to accommodate the likely attrition of participating drivers



## **Experimental Design**

- Three experimental groups
  - Group 1: Baseline group
  - Group 2: Longer-term adaptation group
  - Group 3: Shorter-term adaptation group

|         | Months                        |      |                     |      |   |   |   |   |   |                 |    |    |    |    |    |    |    |    |
|---------|-------------------------------|------|---------------------|------|---|---|---|---|---|-----------------|----|----|----|----|----|----|----|----|
|         | 1                             | 2    | 3                   | 4    | 5 | 6 | 7 | 8 | 9 | 10              | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
| Group 1 | Baseline (no feedback)        |      |                     |      |   |   |   |   |   |                 |    |    |    |    |    |    |    |    |
| Group 2 | Baseline Feedback (14 months) |      |                     |      |   |   |   |   |   | WD              |    |    |    |    |    |    |    |    |
| Group 3 | Base                          | line | Feedback (7 months) |      |   |   |   |   |   | Withdrawal (WD) |    |    |    |    |    |    |    |    |
| Q1 Q2   |                               |      | 2                   | . Q3 |   |   |   |   |   | 4               |    |    |    |    |    | Q5 | 5  | Q6 |



#### Sample size

| Group                      | Initial Sample<br>Distribution |
|----------------------------|--------------------------------|
| 1: Baseline                | 30 devices                     |
| 2: Longer term (14 months) | 210 devices                    |
| 3: Shorter term (7 months) | 30 devices                     |

- For longer term feedback (14 months), drivers that attrition out cannot be replaced given the length of feedback
  - Assuming 5 % attrition per month => 88 (of 210 drivers) will complete to month 18
- Drivers that attrition out will be placed into Group 1 (baseline) or Group 3 (shorter term)



### **Anticipated Outcome**





## **Question**: Can driver performance and safety improve over time with OBMS feedback and coaching?

#### Performance variables

- Performance data (e.g., speed, acceleration, lane deviation)
- Number of safety-critical events per miles traveled (e.g., lane departure events, distraction events, fatigued events)

#### Accounting for...

- Demographic data (e.g., gender, age)
- Environmental condition (lighting, traffic, roadway, weather, time-of-day)
- Seasonal effects



- Allows the analysis of multilevel data using a single regression model
- Frequently used in longitudinal study with data clustered across different levels
  - e.g., individual level, between-driver, and group levels
- Can account for non-normally distributed outcomes (e.g, safety critical events)
- Estimate the relationship of individual level predictors with the dependent variable while taking into account clustering



• Level 1. individual growth model, explains the performance change over time (baseline, feedback and withdrawal phase):

$$g(y_{ijt}) = \pi_{0ij} + \pi_{1ij} \times C_{ijt} + \pi_{2ij} \times X_{ijt} + \pi_{3ij} \times \mathbf{W}_{ijt} + e_{ijt}$$

- -g() represents the link function (e.g., Poisson distribution)
- C is the time variable of study participation (in months)
- X is the study phase (baseline, feedback, withdrawn)
- W represents the matrix of environmental and seasonal factors



• **Level 2. driver-level mode**l, explains the between-subject difference within study groups (e.g., carriers, age, crash history, Z<sub>ii</sub>.):

$$\pi_{0ij} = \beta_{00j} + \beta_{01j} \times Z_{ij} + r_{0ij}$$

$$\pi_{1ij} = \beta_{10j} + \beta_{11j} \times Z_{ij} + r_{1ij}$$

$$\pi_{2ij} = \beta_{20j} + \beta_{21j} \times Z_{ij} + r_{2ij}$$

$$\pi_{3ij} = \beta_{30j} + \beta_{31j} \times Z_{ij} + r_{2ij}$$

• Level 3. group-level model, explains the experimental group differences (e.g., baseline, long-term adaptation, short-term adaptation,  $V_i$ ):

$$\beta_{00j} = \gamma_{000} + \gamma_{001} \times V_j + \mu_{00j}$$
$$\beta_{01j} = \gamma_{010} + \gamma_{011} \times V_j + \mu_{01j}$$



## **Question**: If driving performance improves, does it remain improved over time

#### Autoregressive integrative moving average (ARIMA)

Time series model

traveled/month

- Accounts for seasonality and influence of change from interventions/withdrawals
- To observe if good driver performance persists even after feedback is removed

  Covariate:

Baseline group

$$y_t - y_{t-k} = \varphi(y_{t-1} - y_{t-1-k}) + e_t - \theta e_{t-1} - \Theta e_{t-1-k} + OBMS + CG$$
  
Safety critical Seasonal differences When feedback was events/miles



# **Question**: How do the driver's opinions and attitudes towards the OBMS system and program change over time?

#### Questionnaires

- Baseline (before feedback is received)
  - Assessing driver's expectations of the OBMS system
- Feedback
  - Assessing driver's experiences with the OBMS system after they have received feedbacks.
- Withdrawal
  - system when feedbacks are removed.



#### Questionnaires

#### **Data analysis**

- Regression model to predict change ( $\Delta$ ) in response from one phase to the next
- Cluster analysis
  - to observe homogeneous groups of drivers based on their questionnaire responses



#### Summary

- Study is currently in the pilot phase
- Other areas being evaluated
  - Distinguishing between safe and unsafe drivers
  - Hours of Service: Electronic On Board Monitoring
  - Economics: Cost/benefit analysis of system implementation for carriers
- Other Issues
  - Epoch data only of safety critical events
  - No random events that can provide insights on how drivers may adapt to the system
  - Sampling biases: will need to account for statistically



#### Acknowledgments

- FMCSA (Martin Walker; COTR: Olu Ajayi)
- Peer reviewers (Jerry Krueger, Bob Carroll, Scott Manthey and Bob Clarke)
- Independent evaluation team includes U. Wisconsin (John Lee and Mahtab Ghazizadeh)
- Continuous data collection (Study 2) lead by VTTI (PI: Rich Hanowski and Myra Blanco)
- Transecurity (Mike Mollenhauer)

For further questions, please contact Linda Ng Boyle

E-mail: <u>linda@uw.edu</u>, tel: (206) 616-0245

